Введение
В последнее десятилетие активно развиваются технологии виртуальной реальности (ВР) для решения научных, педагогических и промышленных задач. Это связано как с технологическим цифровым прогрессом, так и с потребностью в использовании новых методов: в науке — для визуального представления сформированных моделей, в медицине — для ускорения реабилитации и повышения эффективности терапии, в образовании — для более реалистичного и интересного представления материала [Slobounov].
Во многих работах было показано, что в ВР можно формировать различные эмоциональные состояния, в том числе и настолько сильные по шкале «Arousal», что их классифицируют как состояние стресса. Так, например, в исследовании Фельнхофер и др. в ВР помещали участников в пять сцен общественного парка и в большинстве случаев наблюдали соответствующие сильные гнев и тревогу [Felnhofer]. При этом в среде ВР можно наблюдать и обратную динамику состояния человека — снижение уровня стресса. Например, Пискош Д. и Чуб М. изучали динамику субъективного уровня стресса и болевых ощущений у детей при заборе крови из вены при взаимодействии с ВР средой [Piskorz]. Экспериментальная группа детей в процессе играла в компьютерную игру с помощью ВР, а контрольная — нет. В результате опроса в экспериментальной группе наблюдались достоверно более низкие субъективные оценки уровня стресса и боли. Кроме эффектов снижения субъективного уровня стресса за счет смещения фокуса внимания показаны и возможности уменьшения стресса по объективным физиологическим показателям с помощью ВР. Например, в исследовании Волицки и др. пробовали снижать предоперационный стресс в выборке онкобольных детей [Wolitzky]. В экспериментальной группе дети рассматривали панорамы зоопарка в ВР, в контрольной выборке отсутствовали воздействия ВР. В результате частота сердечных сокращений была ниже в экспериментальной группе детей.
Такие возможности ВР при погружении индивида в новую среду демонстрируют эффективное использование и в обучении. Например, Клиффорд с соавторами разработали среду виртуального пожарного самолета для обучения специалистов [Clifford, 2019]. Они оценивали уровень стресса пожарных летчиков с помощью показателей вариабельности сердечного ритма. Показано, что по оценкам вегетативной регуляции сердечного ритма уровень стресса участников не отличался между условиями ВР и настоящих учебных полетов. Технология ВР была эффективно использована для обучения медицинского персонала, участвовавшего в борьбе с пандемией COVID-19 [Pallavicini]. Авторы исследования оценивали уровень освоения материала у испытуемых экспериментальной группы, прошедших курс в ВР, и контрольной, освоивших ту же информацию в виде презентаций и брошюр.
Данное исследование было посвящено оценке состояния и уровня стресса у школьников старших классов и студентов младших курсов при обучении в ВР. Для этого во время эксперимента у учащихся регистрировали динамку сердечного ритма.
Вариабельность сердечного ритма (ВСР) — это изменчивость временных расстояний между соседними циклами сердечных сокращений (RR-интервалов). Методика измерения ВСР относительно проста в применении и неинвазивна, а потому подходит для использования в экспериментах с участием людей. Благодаря этим особенностям методики количество медицинских, физиологических и психофизиологических исследований с применением анализа ВСР выросло в несколько раз за последние два десятилетия. В результате этих исследований, выполняемых на основе модели нейровисцеральной интеграции [Thayer, 2000], двухконтурной модели нервно-гуморальной регуляции сердечного ритма [Баевский, 2004], поливагальной теории [Porges], была сформулирована система физиолого-медицинских интерпретаций ВСР [Malik; von Borell]. В основном интерпретация ВСР проводится в терминах функциональных состояний как специфических режимов энергообеспечения организма. В данном случае на основании параметров ВСР определяется статус организма по шкале адаптивности (большая/меньшая адаптивность или более/менее ресурсозатратный режим) или стресса [Баевский, 2004; Машин, 2011]. Другой вариант предполагает описание относительной активности отдельных физиологических структур, участвующих в управлении/регуляции сердечного ритма, а именно парасимпатического и симпатического отделов вегетативной нервной системы [2; 5; 7]. Так, применяя спектральный анализ, вычисляются мощность низкочастотных колебаний ВСР (НЧ, 0,04—0,15 Гц), которая интерпретируется как активность симпатической нервной системы, и мощность высокочастотных колебаний ВСР (ВЧ, 0,15—0,6 Гц), которая интерпретируется как индикатор активности парасимпатической нервной системы; коэффициент НЧ/ВЧ отражает соотношение симпатических и парасимпатических воздействий на сердце. При этом динамика ВСР рассматривается как сумма этих воздействий. При стрессе наблюдается рост НЧ/ВЧ при одновременном снижении общей спектральной мощности колебаний RR-интервалов (ОМ, 0,01—1,6 Гц). Несмотря на то, что данные интерпретации являются предметом активной научной дискуссии, показатели ВСР давно используются как надежные и объективные индикаторы вегетативной регуляции сердечного ритма. В данном исследовании показатели ВСР учащихся сравнивались за периоды фона перед занятиями, занятия в ВР, занятия за монитором компьютера.
Процедура исследования
Схема проведения эксперимента
На первом этапе участники исследования проходили инструктаж и первичный опрос на наличие хронических и/или острых заболеваний, аспектов образа жизни, которые могут влиять на динамику показателей ВСР.
Далее участникам надевали датчик регистрации сердечного ритма. Датчик Zephyr Bio-Harness крепится к эластичному поясу, в который вшиты два тканевых электрода. Пояс крепится на тело человека таким образом, чтобы электроды располагались в 1-м и 2-м грудных отведениях. Размер пояса устанавливается таким образом, чтобы испытуемому было комфортно и при этом различные движения не влияли на положение пояса. Пакетная передача данных от датчика к мобильному устройству производится по беспроводному протоколу — BluetoothSPP 2,4ГГц. Регистрация динамики сердечного ритма участников проводилась непрерывно все время эксперимента.
Далее участники работали в программах: одни — в ВР со шлемом Vive, другие — за монитором компьютера. Последовательность тем обучающих программ (биология и математика) и условий их проведения (ВР и монитор компьютера) контрбалансировались в выборке. Длительность занятий составляла 10 мин. После каждого занятия участникам предлагалось заполнить короткую анкету с 5 открытыми вопросами по прослушанной теме с инструкцией: «Ответьте на нижеприведенные вопросы. Если Вы не знаете ответа, просто пропустите вопрос», — а также оценить «урок» по стандартной семибалльной шкале (-3 — +3): «Насколько новой для Вас была информация в “уроке”», «Насколько интересной для Вас была информация в “уроке”», «Насколько трудно для Вас было воспринимать информацию в “уроке”», «Насколько понятной для Вас была информация в “уроке”». Перед и после каждого занятия участники сидели c закрытыми глазами, в тишине 5 минут для регистрации динамики сердечного ритма в состоянии покоя.
ВР программы и оборудование
Для занятий использовали две ВР-программы: по математике «Теорема о трех перпендикулярах» и биологии «Синтез белка», — которые сгенерированы в мультиплатформенном приложении для создания 3D-изображений Unity. Для программ характерны высокая анимация, интерактивность; средняя продолжительность погружения — 10 мин. В программах предусмотрено текстовое и звуковое сопровождение. Разработанные программы позволяют реализовать все основные параметры виртуальной среды: 1) создание средствами программирования трехмерных изображений объектов, максимально приближенных к реальным; 2) возможность анимации (симуляция действий предметов и пользователя); 3) интерактивность (действия субъекта, например, его движения, изменение наклона головы, меняют изображение предмета и др.); 4) эффект присутствия (prеsеnсе) (ощущение «реальности» видимых информационных объектов и аватаров) [Аникина, 2021; Селиванов, 2021].
Предъявление ВР-программ осуществлялось через шлемы Vive. В Vive используется Full HD-экран OLED, разрешение общее: 2880x1600, на каждый глаз: 1440×1600; частота обновления — 90 Гц; угол обзора — 110°. Изображение — четкое и контрастное, проекция изображения осуществляется на все поле зрения. Низкое время отклика (2 мс) и высокая частота обновления матрицы позволили существенно сократить размытость и дрожание изображения при резких движениях. Этот шлем способен отслеживать не только ориентацию в пространстве, но также наклоны в стороны, вперед/назад, вверх/вниз, передвижение человека. Изображение проецируется на все поле зрения. Шлем работает при сопровождении ресурса Steam в Интернете. Быстрое передвижение в ВР-ситуации реализуется с помощью двух контроллеров (флайстиков): пользователь направляет из флайстика луч в зону виртуальной сцены, субъект оказывается в этой точке.
Регистрация динамики сердечного ритма
Беспроводная регистрация сердечного ритма проводилась с использованием датчика Zephyr (HxM BT), программы «HR-reader» [Полевая, 2012] и сервиса событийно связанной телеметрии сердечного ритма [Polevaya]. Фиксировались моменты начала и окончания каждого занятия, фона в покое. Характеристики сердечного ритма оценивались за периоды каждого занятия и фона.
Анализ вариабельности сердечного ритма
Обработка RR-интервалов и расчеты ВСР были выполнены с использованием библиотеки Python с открытым исходным кодом neurokit 2.0.1 [Makowski, 2021]. Полученные последовательности RR-интервалов были предварительно обработаны перед переходом к анализу с целью выбора последовательностей, свободных от артефактов. Последовательности с аномальными ударами и любыми артефактами (эктопические ритмы, артефакты движения и кашель) были исключены из анализа.
Для характеристики ВСР по анализируемым последовательностям RR-интервалов проводили вычисление выборочной энтропии (SampEn) по стандартному алгоритму [Richman, 2000] с входными параметрами: m = 2 (размерность вложения), r = 0,2*ϭ («фильтрующий фактор»). SampEn является характеристикой «внутреннего порядка» временной последовательности RR-интервалов и математически отражает вероятность обнаружения в последовательности двух соседних векторов, отличающихся при переходе из пространства размерностью m в пространство размерностью m+1. Иначе говоря, SampEn последовательности тем выше, чем больше в ней присутствуют неодинаковые изменения. Ситуациям стресса характерно снижение SampEn. С помощью периодограммного метода Ломба—Скаргла, согласно принятым рекомендациям и стандартам, оценивались следующие спектральные характеристики ВСР: суммарная мощность спектра колебаний последовательности RR-интервалов (TP, мс2); мощность спектра колебаний последовательности RR-интервалов в диапазоне низких частот (0,04—0,15 Гц) (LF, мс2); мощность спектра колебаний последовательности RR-интервалов в диапазоне высоких частот (0,15—0,6 Гц) (HF, мс2); соотношение мощностей спектра в диапазонах низких и высоких частот (индекс вегетативного баланса) (LF/HF). Для ситуаций стресса характерно возрастание индекса вегетативного баланса на фоне снижения общей мощности спектра ВСР. Дополнительно для последовательностей RR-интервалов вычисляли среднее значение RR-интервалов (mean_rr, мс), их стандартное отклонение (SDNN, мс) и корень квадратный разностей соседних RR-интервалов (RMSSD, мс). Снижение этих трех показателей типично для ситуаций напряжения и стресса.
Статистический анализ
Для статистического анализа полученных данных использовали библиотеку Python с открытым исходным кодом SciPy. Для сравнения переменных (показателей ВСР, ответов участников на анкеты) в двух условиях (ВР и монитор компьютера) использовали критерий Уилкоксона (для сравнения двух выборок) и критерий Фридмана (для сравнения трех выборок). Во всех статистических оценках достоверными считали различия при уровне p ≤ 0,05.
Участники исследования
Выборку исследования составили молодые люди (8 — девушки, 8 — юноши); средний возраст — 19 лет (мин. = 18, макс. = 22), студенты, гуманитарного направления подготовки и школьники общеобразовательного учреждения г. Москвы. Все участники дали информированное письменное согласие на участие в исследовании. Исследование проводилось в соответствии с Хельсинкской декларацией 1975 года, пересмотренной в 2013 году.
Результаты
Различия уроков по характеристикам ВСР учащихся
Было проведено сравнение показателей ВСР между периодами первого фона и занятий, а также между уроками в ВР и за монитором компьютера. Параметры распределений и результаты статистического сравнения представлены на рис. 1. В динамике показателей ВСР учащихся во время эксперимента наблюдались достоверное снижение среднего значения RR-интервалов, ВСР по показателям SDNN, RMSSD, SampEn, TP и рост ИВБ между периодами первого фона и каждого из занятий — за монитором компьютера и в ВР. Между периодами занятий в разных условиях достоверных отличий не наблюдалось ни по одному из показателей ВСР.
Такая динамика показателей ВСР закономерно отражает активацию и напряжение учащихся во время уроков. Это связано с вовлечением субъекта в задачи урока, ростом когнитивной нагрузки. Признаков острого стресса во время занятий в динамике показателей ВСР у участников не обнаружено. Из-за отсутствия достоверных различий между разными условиями проведения занятий нельзя утверждать, что среда ВР в образовательных задачах формирует более активное или напряженное состояние субъекта.
Средние значения RR-интервалов и показатели ВСР — SDNN, RMSSD, TP — достоверно возрастали в периодах фона от начала к концу эксперимента (p<0,05, критерий Фридмана). Это означает нормализацию состояния учащихся в покое после работы в обучающих программах к исходному уровню с дополнительной компенсацией.
Различия уроков по субъективным отчетам учащихся в анкетах
Было проведено сравнение ответов участников на тестовые вопросы в конце каждого занятия и субъективных оценок содержания занятий уроков. Результаты сравнения представлены в табл.1. Выявлено, что после занятий в ВР количество правильных ответов на тестовые вопросы было достоверно выше, чем после занятий за монитором компьютера. При этом по оценкам новизны информации занятия в ВР оценивались как занятия с меньшей новизной, чем занятия за монитором. Однако сложность воспринимаемой информации по субъективным оценкам после занятий ВР была выше.
Таким образом, субъективное восприятие занятий в зависимости от условий их проведения (ВР/монитор) отличалось по новизне и сложности воспринимаемой информации. Однако это не отражалось в объективных показателях состояния человека — в динамике показателей ВСР.
Обсуждение результатов
В результате экспериментального определения влияния краткосрочных ВР-программ на адаптационный потенциал пользователя, оцениваемый по показателям ВСР, показано, что уровень активации и напряжения у учащихся не различается между занятиями в ВР и за мониторами компьютеров. Результаты проведенных экспериментов свидетельствуют, что при работе в дидактической ВР высшего уровня в шлемах Vive (высокая иммерсивность) состояние учащегося изменяется с той же амплитудой, что и при соответствующей активности, реализуемой в ВР за монитором компьютера (средняя иммерсивность). Таким образом, экспериментальное исследование с использованием технологии событийно связанной телеметрии ритма сердца [4] позволило установить, что дидактические и развивающие программы в ВР высшего уровня не снижают адаптационный потенциал и не ухудшают вегетативное обеспечение деятельности учащихся старших классов общеобразовательных школ и младших курсов педагогических вузов.
Учащиеся продемонстрировали большее количество правильных ответов на тестовые вопросы после занятия в ВР и оценивали их как содержащие более новую и сложную информацию. Возможно, это связано с тем, что средства ВР, в отличие от традиционных педагогических средств и двухмерного аналога ВР за монитором, предоставляют для субъекта целостные, трехмерные образы тех или иных объектов и явлений с возможностью изучать их с различных сторон (ракурсов) — активно взаимодействовать. Субъект лучше осознает представленные объекты и процессы, а понятия о них формируются более осознанными, углубленными, расширенными. Эффективность ВР-программ при влиянии на процесс обучения детерминирована успешным моделированием 3D объектов, высокой анимацией, интерактивностью, изначально заложенных в содержание ВР высшего уровня.
Таким образом, ВР является эффективным средством для представления новой информации и имеет положительные перспективы для применения в области образования без сдвига адаптационного потенциала пользователя в большей степени, чем компьютерная реальность на мониторе.
Выводы
Результаты, полученные в ходе проведения экспериментального исследования, позволяют говорить о том, что динамика функционального состояния учащихся при обучении в ВР не отличается от таковой при занятиях за монитором компьютера. На основании этого заключения сделаны следующие выводы.
1. Работа в обучающих ВР-программах не формирует дезадаптивных состояний у учащихся.
2. Обучение в ВР-программах демонстрирует большую эффективность по тестовым ответам учащихся по сравнению с обучением за монитором компьютера.

Рис. 1. Динамика показателей ВСР:
А — среднее значение RR-интервалов; Б — RMSSD; В — SDNN; Г — SampEn; Д — TP; Е — LF/HF; их медиана, квартили, мин., макс., в пяти стадиях эксперимента (rest — период фоновой записи в покое, сидя с закрытыми глазами, в начале эксперимента (1), после первого занятия (2) и после второго занятия — в конце эксперимента (3), lesson_mon — период «урока» за монитором компьютера, lesson_vr — период «урока» в ВР); «*» — р <0,05, критерий Уилкоксона
Описательные статистики (значения медианы и квартилей) ответов на
анкету
участников исследования после уроков в ВР и за монитором компьютера
и статистика критерия Уилкоксона
|
Разделы анкеты после урока |
ВР |
за монитором |
||||||
|
Ме-диана |
1-й квартиль |
3-й квартиль |
Ме-диана |
1-й квартиль |
3-й квартиль |
W |
p |
|
|
% правильных ответов |
0,73 |
0,47 |
0,95 |
0,66 |
0,60 |
0,78 |
11 |
0,05 |
|
Новизна информации |
1,00 |
1,00 |
1,00 |
2,00 |
2,00 |
2,00 |
13 |
0,04 |
|
Заинтересованность |
1,50 |
-0,50 |
2,00 |
1,00 |
-0,50 |
1,75 |
9 |
0,07 |
|
Сложность информации |
2,00 |
1,25 |
2,75 |
0,00 |
-1,00 |
1,75 |
12 |
0,04 |
|
Понятность информации |
-0,50 |
-1,00 |
0,75 |
-1,00 |
-1,00 |
1,25 |
8 |
0,1 |