Experimental Psychology (Russia)
2025. Vol. 18, no. 3, 85–100
doi:10.17759/exppsy.2025180306
ISSN: 2072-7593 / 2311-7036 (online)
Application of the covariance analysis by the “sliding window” method to assess the relationship of non-stationary time series
Abstract
A covariance analysis method is described to solve the problem of estimating the dynamics of the relationship between two non-stationary time series, represented by behavioral and/or physiological data. The application of the “sliding window” method is proposed for the possibility of analyzing the degree of connectivity of time series at different epochs. The covariance analysis, unlike traditionally used methods, allows to take into account the magnitude of the dynamics of time series indicators when evaluating the relationship. When comparing covariance and correlation analyses, a high degree of stability of covariance analysis to signal noise was noted.
General Information
Keywords: time series, a covariance analysis, a “sliding window” method
Journal rubric: Psychophysiology
Article type: scientific article
DOI: https://doi.org/10.17759/exppsy.2025180306
Funding. The research is supported by the Russian Science Foundation project No. 23-18-00473 (Institute of Psychology of Russian Academy of Sciences).
Received 09.10.2024
Revised 19.02.2025
Accepted
Published
For citation: Apanovich, V.V., Gladilin, D.L. (2025). Application of the covariance analysis by the “sliding window” method to assess the relationship of non-stationary time series. Experimental Psychology (Russia), 18(3), 85–100. (In Russ.). https://doi.org/10.17759/exppsy.2025180306
© Apanovich V.V., Gladilin D.L., 2025
License: CC BY-NC 4.0
References
- Апанович, В.В., Юдаков, К.С., Егорова, П.И. (2024). Разработка принципа анализа динамики психофизического показателя d’ с применением метода «скользящего окна». Психологический журнал, 45(5), 65—76.
Apanovich, V.V., Yudakov, K.S., Egorova, P.I. (2024). Development of the Principle of Analyzing the Dynamics of the Psychophysical Indicator d’ Using the “Moving Average” Method. Psikhologicheskii zhurnal, 45(5), 65—76. (In Russ.). - Барабанщиков, В.А. (1990). Динамика зрительного восприятия. М.: Наука.
Barabanshchikov, V.A. (1990). Dynamics of visual perception. Moscow: Nauka Publ. (In Russ.). - Галочкин, В.Т. (2021). Эконометрика. Учебник для вузов. М.: Юрайт.
Galochkin, V.T. (2021). Textbook for universities. Moscow: Yurayt. (In Russ.). - Дрейпер, Н., Смит, Г. (1986). Прикладной регрессионный анализ: Кн. 1. Издание второе, переработанное и дополненное / Пер. с англ. М.: Финансы и статистика.
Draper, N., Smith, G. (1986). Applied regression analysis: I. Second edition / Transl. from Engl. Moscow: Finance and Statistics. (In Russ.). - Знаков, В.В. (2024). Понимание причинности и случайности в мире человека. Южно-российский журнал социальных наук, 25(2), 63—76.
Znakov, V.V. (2024). Understanding of the Relationship between Causality and Randomness in The Context of a Human Being. South-Russian Journal of Social Sciences, 25(2), 63—76. (In Russ.). - Костин, А.Н., Голиков, Ю.Я. (2010). Многоуровневость психической регуляции как одно из оснований развития психодиагностики. Психологический журнал, 31(3), 58—73.
Kostin, A.N., Golikov, Yu.Ya (2010). Multilevel character of mental regulation as a basis for psychodiagnostics development. Psikhologicheskii zhurnal, 31(3), 58—73. (In Russ.). - Садов, В.А. (1982). Психофизическое исследование сенсорных эталонов памяти. Психологический журнал, 3(1), 77—84.
Sadov, V.A. (1982). Psychophysical research on memory sensory patterns. Psikhologicheskii zhurnal, 3(1), 77—84. (In Russ.). - Юдаков, К.С., Гладилин, Д.Л., Арамян, Э.А., Апанович, В.В. (2024). Динамика изменения амплитуд компонентов ССП в процессе научения. В: А.Л. Журавлев, Е.А. Сергиенко, Н.Е. Харламенкова, С.В. Тарасов. (Ред.), Психологические исследования: Вып. 12. Сер. Труды молодых ученых ИП РАН (с. 119—130). М.: Изд-во «Институт психологии РАН».
Yudakov, K.S., Gladilin, D.L., Aramyan, E.A., Apanovich, V.V. (2024). Dynamics of changes in the amplitude of the ERP components in the learning process. In: A.L. Zhuravlev, E.A. Sergienko, N.E. Kharlamenkova, S.V. Tarasov (Ed.), Psychological research: Vol. 12. The Serb. Proceedings of young scientists of the IP RAS (pp. 119—130). Moscow: Publishing House “Institute of Psychology of the Russian Academy of Sciences”. (In Russ.). - Apanovich, V., Aramyan, E., Gladilin, D., Yudakov, K. (2023). Dynamics of amplitudes of EEG components and performance in the learning process. In: Proceedings 9th International Conference “The Current Issues in Theoretical and Applied Psychology” (pp. 10—12). Yerevan: YSU.
- Brockwell, P.J., Davis, R.A. (2016). Introduction to Time Series and Forecasting. Springer International Publishing. https://doi.org/10.1007/978-3-319-29854-2
- Fenga, L. (2017). Prediction of Noisy ARIMA Time Series via Butterworth Digital Filter. In: Contributions to Statistics (pp. 173—196). Springer International Publishing. https://doi.org/1007/978-3-319-55789-2_13
- Gustavo E.A.P.A. Batista., Xiaoyue Wang., Eamonn J. Keogh. (2011). A Complexity-Invariant Distance Measure for Time Series. In: Proceedings of the 11th SIAM International Conference on Data Mining, SDM ( 699—710).
- Keogh, E.J., Kasetty, S. (2002). On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining ( 102—111).
- Kislitsyn, A.A., Kozlova, A.B., Korsakova, M.B., Orlov, Yu.N. (2019). Disorder indicator for nonstationary stochastic processes. Doklady Akademii Nauk, 484(4), 393—396.
- Marteau, P.-F. (2009). Time warp edit distance with stiffness adjustment for time series matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 306—3 https://doi.org/10.1109/TPAMI.2008.76
- Paparrizos, J., Li, H., Yang, F., Wu, K., d'Hondt, J.E., Papapetrou, O. (2024). A Survey on Time-Series Distance Measures. arXiv preprint, arXiv:2412.20574.
- Serrà, J., Arcos, J.L. (2012). A Competitive Measure to Assess the Similarity between Two Time Series. International Conference on Case-Based Reasoning. In: Lecture Notes in Computer Science ( 414—427). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32986-9_31
- Sitaram, D., Dalwani, A., Narang, A., Das, M., Auradkar, P. (2015). A Measure of Similarity of Time Series Containing Missing Data Using the Mahalanobis Distance. In: 2015 Second International Conference on Advances in Computing and Communication Engineering, 32, IEEE (pp. 622—627). https://doi.org/10.1109/ICACCE.2015.14
- Vinh, V.T., Anh, D.T. (2015). Compression Rate Distance Measure for Time Series. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), IEEE (pp. 1—10).
Information About the Authors
Contribution of the authors
Vladimir V. Apanovich — data modeling and analysis; manuscript writing and proofreading, visualization of the research results.
Dmitry L. Gladilin — data modeling and analysis, writing and design of the manuscript, visualization of the research results.
Both authors participated in the discussion of the results and approved the final text of the manuscript.
Conflict of interest
The authors declare no conflict of interest.
Metrics
Web Views
Whole time: 84
Previous month: 41
Current month: 16
PDF Downloads
Whole time: 18
Previous month: 10
Current month: 1
Total
Whole time: 102
Previous month: 51
Current month: 17