Modelling and Data Analysis
2019. Vol. 9, no. 4, 57–66
doi:10.17759/mda.2019090404
ISSN: 2219-3758 / 2311-9454 (online)
The Tasks of Analysis and Forecasting the Activities of IT Companies Using Machine Learning Methods
Abstract
General Information
Keywords: Machine Learning, IT Company, customer base segmentation, forecasting
Journal rubric: Data Analysis
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2019090404
Acknowledgements. The authors are grateful to G.F. Artamonov, General Director of OVIONT INFORM, for the data provided.
Published
For citation: Alekseychuk, A.S., Vinogradov, V.I. (2019). The Tasks of Analysis and Forecasting the Activities of IT Companies Using Machine Learning Methods. Modelling and Data Analysis, 9(4), 57–66. (In Russ.). https://doi.org/10.17759/mda.2019090404
© Alekseychuk A.S., Vinogradov V.I., 2019
License: CC BY-NC 4.0
References
- Dubes R.C., Jain A.K. Algorithms for Clustering Data. Englewood Cliffs: Prentice Hall, 1988.
- Shlens J. A tutorial on principal component analysis. Institute for Nonlinear Science, UCSD, 2005.
- Rui Xu, Wunsch D. Survey of clustering algorithms. IEEE Transactions on Neural Networks, vol. 16, no. 3, 2005. pp. 645–678.
- Wang L., Leckie C., Ramamohanarao K., Bezdek J. Automatically Determining the Number of Clusters in Unlabeled Data Sets. IEEE Transactions on Knowledge and Data Engineering, vol. 21, 2009. p. 335–350.
- Rousseeuw Peter J. Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis. Computational and Applied Mathematics, vol. 20, 1987. p. 53–65.
- Lukashin Yu.P. Adaptivnye metody kratkosrochnogo prognozirovaniya vremennyh ryadov. [Adaptive methods of short-term forecasting of time series.] – M.: Finansy i statistika, 2003. (In Russ., Abstr. in Engl.)
Information About the Authors
Metrics
Web Views
Whole time: 590
Previous month: 36
Current month: 9
PDF Downloads
Whole time: 234
Previous month: 0
Current month: 0
Total
Whole time: 824
Previous month: 36
Current month: 9