Application of Machine Learning to Physiological and Neuroanatomical Data in the Field of ADHD Diagnosis

29

Abstract

Attention Deficit\Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder characterized by inattention, hyperactivity, and impulsivity. While traditional diagnostic methods rely on clinical interviews, tests and behavioral observations, machine learning methods provide an opportunity to simplify the ADHD diagnostic process and make it more accurate. This review tries to explore the application of machine learning (ML) algorithms to physiological and neuroanatomical data: magnetic resonance imaging (MRI), functional MRI (fMRI), near-infrared spectroscopy (fNIRS), electroencephalography (EEG), magnetoencephalography (MEG), electrocardiogram (ECG), pupil parameters, eye tracking and activity in the field of exploring biomarkers for ADHD diagnosis. Deep learning models and support vector machines (SVM) are considered the most promising approaches for identifying ADHD in both children and adults. However, despite the fact that with the help of machine learning methods researchers are able to achieve high levels of specificity and sensitivity when solving problems of ADHD assessment, their use in clinical practice requires preliminary work to verify the results on large samples, as well as addressing data security and ethical issues.

General Information

Keywords: Attention deficit hyperactivity disorder (ADHD), Biomarker, Machine Learning, Neurophysiological data, Pupillary response, Electroencephalogram, Magnetic Resonance Imaging, Heart Activity

Journal rubric: Psychology of Special and Inclusive Education

Article type: review article

DOI: https://doi.org/10.17759/jmfp.2024130208

Received: 03.05.2024

Accepted:

For citation: Sologub P.S. Application of Machine Learning to Physiological and Neuroanatomical Data in the Field of ADHD Diagnosis [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2024. Vol. 13, no. 2, pp. 84–91. DOI: 10.17759/jmfp.2024130208. (In Russ., аbstr. in Engl.)

References

  1. Khramov A.E., Koronovskii A.A. Nepreryvnyi veivletnyi analiz i ego prilozheniya [Continuous wavelet analysis and its applications]. Moscow: Fiziko-matematicheskaya literatura, 2003. 174 c.
  2. Khaleghi A., Birgani P.M., Fooladi M.F., Mohammadi M.R. Applicable features of electroencephalogram for ADHD diagnosis. Research on Biomedical Engineering. 2020. Vol. 36, pp. 1—11. DOI:10.1007/s42600-019-00036-9
  3. Ariel R., Castel A.D. Eyes wide open: enhanced pupil dilation when selectively studying important information. Experimental Brain Research. 2014. Vol. 232, pp. 337—344. DOI:10.1007/s00221-013-3744-5
  4. Igual L., Soliva J.C., Escalera S., Gimeno R, Vilarroya O., Radeva P. Automatic brain caudate nuclei segmentation and classification in diagnostic of attention-deficit/hyperactivity disorder. Computerized Medical Imaging and Graphics. 2012. Vol. 36, no. 8, pp. 591—600. DOI:10.1016/j.compmedimag.2012.08.002
  5. Johnston B.A., Mwangi B., Matthews K., Coghill D., Konrad K., Steele J.D. Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Human Brain Mapping. 2014. Vol. 35, no. 10, pp. 5179—5189. DOI:10.1002/hbm.22542
  6. Choi S., Jang Y., Kim H. A Deep Learning Approach to Imputation of Dynamic Pupil Size Data and Prediction of ADHD. International Journal on Artificial Intelligence Tools. 2023. Vol. 32, no. 6, article ID 2350020. DOI:10.1142/S0218213023500203
  7. Chugh N., Aggarwal S., Balyan A. The Hybrid Deep Learning Model for Identification of Attention-Deficit/Hyperactivity Disorder Using EEG. Clinical EEG and Neuroscience. 2024. Vol. 55, no. 1, pp. 22—33. DOI:10.1177/15500594231193511
  8. Mueller A., Candrian G., Kropotov J.D., Ponomarev V.A., Baschera G.M. Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomedical Physics. 2010. Vol. 4. Suppl 1, article ID S1. 12 p. DOI:10.1186/1753-4631-4-S1-S1
  9. Varela Casal P., Lorena Esposito F., Morata Martínez I. et al. Clinical Validation of Eye Vergence as an Objective Marker for Diagnosis of ADHD in Children / P. Varela Casal, F. Lorena Esposito, I. Morata Martínez [et al.]. Journal of attention disorders. 2019. Vol. 23, no. 6, pp. 599—614. DOI:10.1177/1087054717749931
  10. Ahmadi A., Kashefi M., Shahrokhi H., Nazari M.A. Computer aided diagnosis system using deep convolutional neural networks for ADHD subtypes. Biomedical Signal Processing and Control. 2021. Vol. 63, article ID 102227. DOI:10.1016/j.bspc.2020.102227
  11. Park B.Y., Kim M., Seo J., Lee J.M., Park H. Connectivity Analysis and Feature Classification in Attention Deficit Hyperactivity Disorder Sub-Types: A Task Functional Magnetic Resonance Imaging Study. Brain topography. 2016. Vol. 29, pp. 429—439. DOI:10.1007/s10548-015-0463-1
  12. Das W., Khanna S. A Robust Machine Learning Based Framework for the Automated Detection of ADHD Using Pupillometric Biomarkers and Time Series Analysis. Scientific Reports. 2021. Vol. 11, article ID 16370. 12 p. DOI:10.1038/s41598-021-95673-5
  13. Loh H.W., Ooi C.P., Oh S.L., Barua P.D., Tan Y.R., Molinari F., March S., Acharya U.R., Fung D.S.S. Deep neural network technique for automated detection of ADHD and CD using ECG signal. Computer methods and programs in biomedicine. 2023. Vol. 241, article ID 107775. 8 p. DOI:10.1016/j.cmpb.2023.107775
  14. Hamedi N., Khadem A., Delrobaei M., Babajani-Feremi A. Detecting ADHD Based on Brain Functional Connectivity Using Resting-State MEG Signals. Frontiers in Biomedical Technologies. 2022. Vol. 9, no. 2, pp. 110—118. DOI:10.18502/fbt.v9i2.8850
  15. Altınkaynak М., Dolu N., Güven A., Pektaş F., Özmen S., Demirci E., İzzetoğlu M. Diagnosis of Attention Deficit Hyperactivity Disorder with combined time and frequency features. Biocybernetics and Biomedical Engineering. 2020. Vol. 40, no. 3, pp. 927—937. DOI:10.1016/j.bbe.2020.04.006
  16. Mueller A., Candrian G., V. Grane A., Kropotov J.D., Ponomarev V.A., Baschera G.M. Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: a validation study. Nonlinear Biomedical Physics. 2011. Vol. 5, article ID 5. 18 p. DOI:10.1186/1753-4631-5-5
  17. Lim L., Marquand A., Cubillo A.A., Smith A.B., Chantiluke K., Simmons A., Mehta M., Rubia K. Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLoS ONE. 2013. Vol. 8, no. 5, article ID e63660. 10 p. DOI:10.1371/journal.pone.0063660
  18. Maniruzzaman M., Shin J., Hasan M.A.M., Yasumura A. Efficient Feature Selection and Machine Learning Based ADHD Detection Using Signal EEG. Computers, Materials & Continua. 2022. Vol. 72, no. 3, pp. 5179—5195. DOI:10.32604/cmc.2022.028339
  19. Peng X., Lin P., Zhang T., Wang J. Extreme learning machine-based classification of ADHD using brain structural MRI data. PLoS ONE. 2013. Vol. 8, no. 11, article ID e79476. 12 p. DOI:10.1371/journal.pone.0079476
  20. Merzon L., Pettersson K., Aronen E.T., Huhdanpää H., Seesjärvi E., Henriksson L., MacInnes W.J., Mannerkoski M., Macaluso E., Salmi J. Eye movement behavior in a real-world virtual reality task reveals ADHD in children. Scientific reports. 2022. Vol. 12, article ID 20308. 12 p. DOI:10.1038/s41598-022-24552-4
  21. Ghasemi E., Ebrahimi M., Ebrahimie E. Machine learning models effectively distinguish attention-deficit/hyperactivity disorder using event-related potentials. Cognitive Neurodynamics. 2022. Vol. 16. 1335—1349. DOI:10.1007/s11571-021-09746-2
  22. Nobukawa S., Shirama A., Takahashi T., Takeda T., Ohta H., Kikuchi M., Iwanami A., Kato N., Toda S. Identification of attention-deficit hyperactivity disorder based on the complexity and symmetricity of pupil diameter. Scientific reports. 2021. Vol. 11, article ID 8439. 14 p. DOI:10.1038/s41598-021-88191-x
  23. Ortuño-Miró S., Molina-Rodríguez S., Belmonte C., Ibañez-Ballesteros J. Identifying ADHD boys by very-low frequency prefrontal fNIRS fluctuations during a rhythmic mental arithmetic task. Journal of Neural Engineering. 2023. Vol. 20, article ID 036018. 23 p. DOI:10.1088/1741-2552/acad2b
  24. Kasim Ö. Identification of attention deficit hyperactivity disorder with deep learning model. Physical and engineering sciences in medicine. 2023. Vol. 46, pp. 1081—1090. DOI:10.1007/s13246-023-01275-y
  25. Kaur A., Kahlon K.S. Accurate Identification of ADHD among Adults Using Real-Time Activity Data. Brain Sciences. 2022. Vol. 12, no. 7, article ID 831. 17 p. DOI:10.3390/brainsci12070831
  26. Tenev A., Markovska-Simoska S., Kocarev L., Pop-Jordanov J., Müller A., Candrian G. Machine Learning Approach for Classification of ADHD adults. International journal of psychophysiology. 2013. Vol. 93, no. 1, pp. 162—166. DOI:10.1016/j.ijpsycho.2013.01.008
  27. Mafi M., Radfar S. High Dimensional Convolutional Neural Network for EEG Connectivity-Based Diagnosis of ADHD. Journal of biomedical physics & engineering. 2022. Vol. 12(6), pp. 645—654. DOI:10.31661/jbpe.v0i0.2108-1380
  28. Moghaddari M., Lighvan M.Z., Danishvar S. Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG. Computer Methods and Programs in Biomedicine. 2020. Vol. 197, article ID 105738. 11 p. DOI:10.1016/j.cmpb.2020.105738
  29. Wainstein G., Rojas-Líbano D., Crossley N.A., Carrasco X., Aboitiz F., Ossandón T. Pupil size tracks attentional performance in attention-deficit/hyperactivity disorder. Scientific Reports. 2017. Vol. 7, article ID 8228. 9 p. DOI:10.1038/s41598-017-08246-w
  30. Salari N., Ghasemi H., Abdoli N., Rahmani A., Shiri M., Hashemian A., Akbari H., Mohammadi M. The global prevalence of ADHD in children and adolescents: A systematic review and meta-analysis. Rivista italiana di pediatria = The Italian journal of pediatrics. 2023. Vol. 49, article ID 48, 12 p. DOI:10.1186/s13052-023-01456-1

Information About the Authors

Polina S. Sologub, PhD Student, Saint Petersburg State University, Moscow, Russia, ORCID: https://orcid.org/0009-0004-1928-2690, e-mail: polinesku@gmail.com

Metrics

Views

Total: 160
Previous month: 28
Current month: 8

Downloads

Total: 29
Previous month: 5
Current month: 5