Modelling and Data Analysis
2019. Vol. 9, no. 4, 88–99
doi:10.17759/mda.2019090407
ISSN: 2219-3758 / 2311-9454 (online)
Gradient Optimization Methods in Machine Learning for the Identification of Dynamic Systems Parameters
Abstract
General Information
Keywords: conditional optimization, machine learning, gradient methods of machine learning, parameter estimation
Journal rubric: Optimization Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2019090407
Published
For citation: Panteleev, A.V., Lobanov, A.V. (2019). Gradient Optimization Methods in Machine Learning for the Identification of Dynamic Systems Parameters. Modelling and Data Analysis, 9(4), 88–99. (In Russ.). https://doi.org/10.17759/mda.2019090407
© Panteleev A.V., Lobanov A.V., 2019
License: CC BY-NC 4.0
References
- Ivchenko G.I., Medvedev Yu. I. Vvedenie v matematicheskuyu statistiku [Introduction to Mathematical Statistics]. Moscow: Publ. Librocom, 2014.
- Panteleev A.V., Letova Т.А. Metody optimizacii. Prakticheskij kurs [Optimization Methods. Practical Course]. Мoscow: Logos, 2011.
- Panteleev A.V., Skavinskaya D.V. Metaehvristicheskie algoritmy globalnoj optimizacii [Global optimization metaheuristic algorithms]. Мoscow: Publ. Vuzovskaya kniga, 2019.
- Panteleev A.V., Kryuchkov A. Yu. Metaehvristicheskie metody optimizacii v zadachah ocenki parametrov dinamicheskih sistem [Metaheuristic optimization methods for parameters estimation of dynamic systems] // Civil Aviation High Technologies. 2017; 20(2): 37–45.
- Ruder S. An Overview of Gradient Descent Optimization Algorithms arXiv:1609.04747v2 [cs.LG] 15 Jun 2017.
- Floudas C.A., Pardalos P.M., Adjimann C.S., Esposito W.R., Gumus Z.H., Harding S.T., Schweiger C.A. Handbook of test problems in local and global optimization, 1999. Vol. 67. Springer US. 442 p. https://titan.princeton.edu/TestProblems/
- Tjoa I.–B., Biegler L.T. Simultaneous solution and optimization strategies for parameter estimation of differential–algebraic equation systems. Industrial & Engineering Chemistry Research, 1991, Vol. 30, No. 2, pp. 376–385. https://doi.org/10.1021/ie00050a015
Information About the Authors
Metrics
Web Views
Whole time: 1206
Previous month: 27
Current month: 0
PDF Downloads
Whole time: 1446
Previous month: 7
Current month: 1
Total
Whole time: 2652
Previous month: 34
Current month: 1