Modelling and Data Analysis
2022. Vol. 12, no. 2, 20–33
doi:10.17759/mda.2022120202
ISSN: 2219-3758 / 2311-9454 (online)
Development of a Keyphrase Extraction Method Based on a Probabilistic Topic Model
Abstract
General Information
Keywords: keyword extraction, topic modeling, NLP, LDA, machine learning
Journal rubric: Data Analysis
DOI: https://doi.org/10.17759/mda.2022120202
Received: 18.04.2022
Accepted:
For citation: Romanadze E.L., Sudakov V.A., Kislinsky V.G. Development of a Keyphrase Extraction Method Based on a Probabilistic Topic Model. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2022. Vol. 12, no. 2, pp. 20–33. DOI: 10.17759/mda.2022120202. (In Russ., аbstr. in Engl.)
References
- Augenstein, I., Das, M., Riedel, S., Vikraman, L. and McCallum, A. (2017) Semeval 2017 task 10: Scienceie – extracting keyphrases and relations from scientific publications. In Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver, Canada, August 3-4, 2017, 546–555. URL: https://doi.org/10.18653/v1/S17-2091.
- Apishev M.A. Effective implementation of topic modeling algorithms: dis. cand. physics and mathematics: 230401. - M., 2020. - 152 p.
- Vorontsov K.V. Probabilistic topic modeling: theory, models, algorithms and design BigARTM. URL: http://www.machinelearning.ru/wiki/images/d/d5/Voron17survey-artm.pdf.
- Vorontsov K., Potapenko A. A. Additive regularization of thematic models // Reports of the Academy of Sciences. — 2014. — Т. 456, № 3. 268-271 p.
- Korshunov Anton, Gomzin Andrey. Thematic modeling of natural language texts // Proceedings of the Institute for System Programming of the Russian Academy of Sciences, 2012. Т. 23. p. 215–244
Information About the Authors
Metrics
Views
Total: 571
Previous month: 31
Current month: 16
Downloads
Total: 248
Previous month: 8
Current month: 6