Optimization of Scheme Selection for 3D Printing of Functional Objects from Composite Materials



The implementation of priority areas for the development of the Economy of the Russian Federation, the digital transformation of production, the improvement and development of new designs used at domestic enterprises in the aviation and rocket and space industries, energy, mechanical engineering and others, is largely associated with the use of polymer composite materials (CM), which provide optimal physical and mechanical characteristics of structures (functional objects). As reinforcing elements of CM, carbon fibers are widely used, because they have high specific strength. At the same time, the mechanical properties of products significantly depend on the direction of the fibers. One of the promising directions for the manufacture of objects from CM, which makes it possible to create structures of complex shape, is 3D printing technology. The use of 3D printing makes it possible to obtain structures with spatial reinforcement along specified trajectories. This is due to the fact that continuous carbon fiber reinforced polymer composite (CFRT) is used for printing. This allows full control over the location of the fibers during the printing process, which allows you to arrange 100% of the fibers in accordance with the required operating conditions of the object. However, practically unexplored are issues related to the optimization of the process of 3D printing of functional objects from CM by the method CFRT 3D printing in terms of controlling the location of fibers during printing, allowing to take into account the criteria for the destruction of the composite. This work is devoted to this goal, which proposes general approaches to setting and solving the problem of optimizing the selection of a 3D-printing scheme.

General Information

Keywords: optimization, composite materials, elasticity theory, composite material destruction criteria, 3D printing, wavelet analysis

Journal rubric: Data Analysis

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2023130201

Received: 21.04.2023


For citation: Deniskina G.Yu. Optimization of Scheme Selection for 3D Printing of Functional Objects from Composite Materials. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2023. Vol. 13, no. 2, pp. 7–35. DOI: 10.17759/mda.2023130201. (In Russ., аbstr. in Engl.)


  1. Bosov, A.V., Bityukov, Y.I., Deniskina, G.Y. About Searching for the Optimal 3D Printing Scheme of Structures from Composite Materials / A.V. Bosov, Y.I. Bityukov, G.Y. Deniskina // Informatics and Applications. – 2022. – V.16. – Issue 1. – P. 10–19. – DOI: 10.14357/19922264220102.
  2. Vasiljev, V.V. Mechanics of Structures Made of Composite Materials / V.V. Vasiljev. – Moskow: Mashinostroenie, 1988. – 272 p.
  3. Deniskina, G.Y. CAD/CAM/CAE-System for Manufacturing Structures from Fibrous Composite Materials Using 3D-printing / G.Y. Deniskina // Trudy MAI. – 2022. – №126. – DOI: 10.34759/trd-2022-126-21.
  4. Deniskina, G.Y. Method for Finding Approximate Solutions of Elasticity Equations Using Spline Wavelets / Г.Ю. Денискина // G.Y. Deniskina // Trudy MAI. – 2021. – №121. – DOI: 10.34759/trd-2021-121-24.
  5. Deniskina, G.Y. Program for Modeling the Process of 3D Printing CompositeCAD (CAD-system) / G.Y. Deniskina // Certificate No. 2022682105 on State Registration of the Computer Program. – 2022.
  6. Deniskina, G.Y. Program for Modeling the Process of 3D Printing CompositeCAD (CAE-system) / G.Y. Deniskina // Certificate No. 2022682106 on State Registration of the Computer Program. – 2022.
  7. Zorich, V.A. Mathematical analysis: in 2 parts / V.A. Zorich. – 3rd ed.– Moscow: MCMNMO, 2001. – 794 p.
  8. Lavrentjev, M.A., Shabat, B.V. Methods of the Theory of Functions of a Complex Variable / M.A. Lavrentjev, B.V. Shabat. – Moscow: Nauka, 1973. – 736 p.
  9. Amati, G. The Reuse of Free-Form Surface Features: A Wavelet Approach / G. Amati, A. Liverani, G. Caligiana // Proceedings of the IASTED International Conference APPLIED SIMULATION AND MODELLING, June 28-30, 2004, Rhodes, Greece. – P. 247–252.
  10. Bityukov, Y.I. Spline Wavelets Use for Output Processes Analysis of Multi-Dimensional Non-Stationary Linear Control Systems / Y.I. Bityukov, Y.I. Deniskin, G.Y. Deniskina // Journal of Physics: Conference Series. – Omsk: Institute of Physics Publishing, 2018. – P. 012018. – DOI 10.1088/1742-6596/944/1/012018.
  11. Deniskina, G.Y. About Biortogonal Wavelets, Created on the Basis of Scheme of Increasing of Lazy Wavelets / G.Y. Deniskina, Y.I. Deniskin, Y.I. Bityukov // Lecture Notes in Electrical Engineering. – 2021. – Vol. 729 LNEE. – P. 173–181. – DOI 10.1007/978-3-030-71119-1_18.
  12. Application of Wavelets and Conformal Reflections to Finding Optimal Scheme of Fiber Placement at 3D-Printing Constructions from Composition Materials / Yu. Bityukov, Yu. Deniskin, G. Deniskina, I.V. Potsebneva // E3S Web of Conferences: 2021. – P. 05004. – DOI 10.1051/e3sconf/202124405004.
  13. Deniskina, G.Y. About Some Computational Algorithms for Locally Approximation Splines, Based on the Wavelet Transformation and Convolution / G.Y. Deniskina, Y.I. Deniskin, Y.I. Bityukov // Lecture Notes in Electrical Engineering. – 2021. – Vol. 729 LNEE. – P. 182–191. – DOI 10.1007/978-3-030-71119-1_19.
  14. Bujurke, N., Shiralashetti, S., Salimath, C. An Application of Single-term Haar Wavelet Series in the Solution of Non-linear Oscillator Equations / N. Bujurke, S. Shiralashetti, C.J. Salimath // Comput. Appl. Math. – 2009. – 227. – P. 234–244.
  15. Daubechies, I. A Simple Wilson Orthonormal Basis with Exponential Decay / I. Daubechies, S. Jaffard, J.L. Journe // SIAM J. Math. Anal. – 1991. – 22. – P. 554–572.
  16. Daubechies, I. Orthonormal Bases of Compactly Supported Wavelets / I. Daubechies // Comm. Pure Appl. Math. – 1988. – 41. – P. 909–996.
  17. Daubechies, I. Orthonormal Bases of Compactly Supported Wavelets II. Variations on a Theme / I. Daubechies // SIAM J.Math.Anal. – 1993. – 21. – P. 499–519.
  18. Fiber Line Optimization in Single Ply for 3D Printed Composites / Yusuke Yamanaka, Akira Todoroki, Masahito Ueda, Yoshiyasu Hirano and Ryosuke Matsuzaki // Open Journal of Composite Materials, SCIRP. – 2016, Vol. 6, No 4. – P. 121–131.
  19. Lepik, U. Application of the Haar Wavelet Transform to Solving Integral and Differential Equations / U. Lepik // Proc. Estonian Acad. Sci. Phys. Math. – 2007. – 56. – P. 28–46.
  20. Lepik, U., Hein, H. Haar Wavelets with Applications / U. Lepik, H. Hein. – Springer, 2014. – 207 p.
  21. Mallat, S. Multiresolution Approximation and Wavelets / S. Mallat // Trans. Amer. Math. Soc. – 1989. – 315. – P. 69–88.
  22. Mallat, S. Zero-crossings of a Wavelet Transform / S. Mallat // IEEE Trans. Inform. Theory. – 1991. – 37. – P. 1019–1033.
  23. Micchelli, C.A. Interpolatory Subdivision Schemes and Wavelets / C.A. Micchelli // Journal of Approximation Theory. – 1996. – Vol. 86, Issue 1. – P. 41–71.
  24. Stollnitz, E.J. Wavelets for Computer Graphics: A Primer / Eric J. Stollnitz, T.D. DeRose, David H. Salesin // IEEE Computer Graphics and Applications. – 1995. – May. – 15(3). – P. 76–84 (part 1); July. – 15(4). – P. 75–85 (part 2).
  25. Storn, R., Price, K. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces / R. Storn, K. Price // Journal of Global Optimization. – 1997, No. 11. – P. 341–359.
  26. Sweldens, W. The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets / W. Sweldens // Applied and Computational Harmonic Analysis. – 1996. –Vol.3, Issue 2. – P. 186–200.
  27. Torghabehi, O.O. Developing a Computational Approach Towards a Performance Based Design and Robotic Fabrication of Fibrous Skin Structures / Omid Oliyan Torghabehi, Alireza Seyedahmadian and Wes McGee // Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2015, Amsterdam Future Visions, 17–20 August 2015, Amsterdam, The Netherlands. – DOI: 10.13140/RG.2.1.2324.6569.

Information About the Authors

Galina Y. Deniskina, Assistant of the Department of Probability Theory and Computer Modeling, Moscow Aviation Institute (National Research University) (MAI), Moscow, Russia, ORCID: https://orcid.org/0009-0000-4226-3288, e-mail: dega17@yandex.ru



Total: 81
Previous month: 6
Current month: 5


Total: 45
Previous month: 10
Current month: 0