The Experience of Developing an Adaptive Hybrid EEG Signal Filter with Extended Information Adaptability



This article discusses the development of a hybrid EEG signal filter based on independent component analysis (ICA) and wavelet transform. The purpose of the filter is to remove artifacts from EEG signals caused by physiological processes that can be identified by synchronous time series data. The article describes the algorithm and justifies the suitability of the method for the task. Empirical results from real experimental studies are also presented.

General Information

Keywords: signal filtering, adaptive algorithms, multi-scale analysis, electroencephalography (EEG), independent component analysis

Journal rubric: Data Analysis

Article type: scientific article


Received: 13.05.2024


For citation: Yuryev G.A. The Experience of Developing an Adaptive Hybrid EEG Signal Filter with Extended Information Adaptability. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2024. Vol. 14, no. 2, pp. 98–113. DOI: 10.17759/mda.2024140206. (In Russ., аbstr. in Engl.)


  1. A robust adaptive denoising framework for real-time artifact removal in EEG. Houston Methodist Research Institute.
  2. Allen JE, Cross K. Computational Models for Reducing Noise in EEG Data. Neuroscience Letters. 2022;760:136012. doi:10.1016/j.neulet.2021.136012.
  3. Davis F, Swartz E. Evaluation of Dry Electrodes in Long-term EEG and Neural Monitoring Applications. Journal of Neuroscience Methods. 2021;345:108972. doi:10.1016/j.jneumeth.2020.108972.
  4. Garces Correa A, Laciar E, Patino HD, Valentinuzzi ME. Artifact removal from EEG signals using adaptive filters in cascade. J Phys Conf Ser. 2007;90(1):012081. doi:10.1088/1742-6596/90/1/012081.
  5. Green D, Mason A, Tompkins W. Adaptive Filtering Techniques for Noise Reduction and AC Interference Minimization in Electrocardiogram Signals. IEEE Transactions on Biomedical Engineering. 2018;65(9):2023-2032. doi:10.1109/TBME.2018.2813241.
  6. Hybrid Multi-Channel EEG Filtering Method for Ocular Artifact Removal. Oxford Academic.
  7. James JR, O'Neil K. Independent Component Analysis of EEG data. Neuroscience Methods. 2018;306:78-94. doi:10.1016/j.neumeth.2018.05.022.
  8. Jiang X, Bian GB, Tian Z. Removal of Artifacts from EEG Signals: A Review. Sensors. 2019;19(5):987. doi:10.3390/s19050987.
  9. Lee T, Girolami M. A Comprehensive Review of Wavelet Transform Techniques for Signal Processing in EEG-based Brain-Computer Interfaces. Computational Intelligence and Neuroscience. 2019;2019:6573281. doi:10.1155/2019/6573281.
  10. Morris K, Patel C. Real-Time EEG Signal Monitoring Under Adaptive Filtering Framework. Biomedical Signal Processing and Control. 2020;59:101894. doi:10.1016/j.bspc.2020.101894.
  11. Patel S, Hughes R, Hester T. The Development and Performance of Dry Electrodes for EEG Measurement. IEEE Transactions on Biomedical Engineering. 2018;65(6):1373-1380. doi:10.1109/TBME.2017.2769700.
  12. Removal of Artifacts from EEG Signals: A Review. MDPI.
  13. Smith H, Brown M. Advanced Signal Processing Techniques for Artifact Removal in EEG. Journal of Neural Engineering. 2020;17(4):046014. doi:10.1088/1741-2552/ab8d52.
  14. Thompson M, Smith I. Neural Networks for Signal Processing in EEG: An Overview of Applications and Challenges. Journal of Neural Engineering. 2021;18(2):021001. doi:10.1088/1741-2552/abc8fe.
  15. Wang Y, Zhou L. Signal Enhancement Techniques for EEG Monitoring: Applications and Challenges. Applied Neurobiology. 2020;46(4):402-417. doi:10.1007/s12035-020-01934-7.

Information About the Authors

Grigory A. Yuryev, PhD in Physics and Matematics, Associate Professor, Head of Department of the Computer Science Faculty, Leading Researcher, Youth Laboratory Information Technologies for Psychological Diagnostics, Moscow State University of Psychology and Education, Moscow, Russia, ORCID:, e-mail:



Total: 4
Previous month: 0
Current month: 4


Total: 4
Previous month: 0
Current month: 4