Interrelation of Reduction of Mismatch Negativity and Cognitive Deficit in Paranoid Schizophrenia

65

Abstract

This study shows a relationship between the reduction of mismatch negativity (MMN) and the structure and severity of cognitive deficits in patients with paranoid schizophrenia. The study involved 19 patients with paranoid schizophrenia and 43 healthy subjects. The results of BACS and the psychophysiological research method of event related potentials (ERPs) found a relationship between the reduction of MMN and limited verbal working memory, reduced information processing speed and verbal fluency in patients with paranoid schizophrenia. The findings support the hypothesis posed about the importance of early information processing on the formation of cognitive deficits in patients with paranoid schizophrenia patients.

General Information

Keywords: cognitive deficits, mismatch negativity, MMN, paranoid schizophrenia, working memory, attention, event related potentials, BACS

Journal rubric: Clinical Psychology and Psychophysiology

Article type: scientific article

For citation: Petrov M.V., Kolchev A.I., Ershov B.B., Gvozdetckii A.N., Golovanova I.V., Daeva N.A. Interrelation of Reduction of Mismatch Negativity and Cognitive Deficit in Paranoid Schizophrenia. Vestnik of Saint Petersburg University. Psychology, 2017. Vol. 7, no. 1, pp. 91–103. (In Russ., аbstr. in Engl.)

References

  1. Naatanen R., Alho K. Generators of electrical and magnetic mismatch responses in humans // Brain Topography.  1995.Vol. 7.  P. 315–320.
  2. Umbricht D., Krljes S. Mismatch negativity in schizophrenia: a meta — analysis // Schizophrenia Research. 2005. Vol. 73. P. 1–23.
  3. Baldeweg  T.,  Klugman  A.,  Gruzelier  J.,  Hirsch  S.  R.  Mismatch  negativity  potentials  and  cognitive  impairment in schizophrenia // Schizophrenia Research. 2004. N 2–3, Vol. 69. P. 203–217.
  4. Progressive Decrease of Left Heschl Gyrus and Planum Temporale Gray Matter Volume in First–Episode Schizophrenia: A Longitudinal Magnetic Resonance Imaging Study / Kasai K., Kasai K., Shenton M., Salisbury  D.,  Hirayasu  Y.,  Onitsuka  T.,  Spencer  M.,  Yurgelun-Todd  D.,  Kikinis  R.,  Jolesz  F.,  McCarley  R.  // Arch Gen Psychiatry. 2003. N 8, Vol. 60. P. 766–775.
  5. The  Brief  Assessment  of  Cognition  in  Schizophrenia:  Reliability,  sensitivity,  and  comparison  with  a  standard  neurocognitive  battery  /  Keefe  R.  S.    E.,  Goldberg  T.  E.,  Harvey  P.  D.,  Gold  J.  M.,  Poe  M.  P.,  Coughenour L. // Schizophrenia Research. 2004. N 2–3, Vol. 68. P. 283–297.
  6. Meadows J. Functions of the Right Cerebral Hemisphere // Journal of neurology, neurosurgery, and psychiatry. 1985. N 9, Vol. 48. P. 959.
  7. Electrophysiological indices of automatic and controlled auditory information processing in first–episode, recent–onset and chronic schizophrenia / Umbricht D. S.    G., Bates J. A., Lieberman J. A., Kane J. M., Javitt D. C. // Biological Psychiatry. 2006. N 8, Vol. 59. P. 762–772.
  8. Update on electrophysiology in schisophrenia / McCarley R. W., O’Donnell B. F., Niznikiewicz M. A., Salisbury D. F., Potts G. F., Hirayasu Y. // International Review of Psychiatry. 1997. N 9. P. 373–386.
  9. Impairment  in  activation  of  a  frontal  attention–switch  mechanism  in  schizophrenic  patients  / Sato Y., Yabe H., Todd J. Michie P., Shinozaki N., Sutoh T., Hiruma T., Nashida T., Matsuoka T., Kaneko S. // Biological Psychology. 2003. N 62. P. 49–63
  10. Ketamine–induced deficits in auditory and visual context–dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia / Umbricht D., Schmid L., Koller R., Vollenweider F. X., Hell D., Javitt D. C. // Archives of general psychiatry. 2000. N 12, Vol. 57. P. 1139–1147.
  11. Coyle J. T. The GABA–glutamate connection in schizophrenia: Which is the proximate cause? // Biochemical Pharmacology. 2004. Vol. 68, N 8. P. 1507–1514.
  12. Harrison P. J., Weinberger D. R. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence // Molecular psychiatry. 2005. N 1, Vol. 10. P. 40–68.
  13. Henn F. А Neurobiology of schizophrenia // Schweizer Archiv fur Neurologie und Psychiatrie. Archives suisses de neurologie et de psychiatrie. Archivio svizzero di neurologia e psichiatria. 1995. N 146. P. 224–229.
  14. Umbricht D., Koller R., Vollenweider F. X., Schmid L. Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers // Biological Psychiatry. 2002. N 5, Vol. 51. P. 400–406.
  15. Misattribution of sensory input reflected in dysfunctional target:non–target ERPs in schizophrenia / Brown K., Gordon E., Williams L., Bahramali H., Harris A., Gray J., Gonsalvez C., Meares R. // Psychological medicine. 2000. N 6, Vol. 30. P. 1443–1449.
  16. Picton T. W., Hillyard S. A. Human auditory evoked potentials. II. Effects of attention // Electroencephalography and Clinical Neurophysiology. 1974. N 2, Vol. 36. P. 191–200.
  17. Garcia–Larrea L., Lukaszewicz A. C., Mauguiere F. Revisiting the oddball paradigm. Non–target vs neutral stimuli and the evaluation of ERP attentional effects // Neuropsychologia. 1992. N 8, Vol. 30. P. 723–741.
  18. Juvitt D. C., Doneshka P., Grochowski S., Ritter W. Impaired mismatch negativity generation reflects widespread dysfunction of working memory in schizophrenia // Archives of General Psychiatry. 1995. N 7, Vol. 52. P. 550–558.
  19. Kawakubo Y., Kasai K. Support for an association between mismatch negativity and social functioning in schizophrenia // Progress in Neuro–Psychopharmacology and Biological Psychiatry. 2006. Vol. 30, N 7. P. 1367–1368.
  20. Kogoj A., Pirtošek Z., Tomori M., Vodušek D. B. Event–related potentials elicited by distractors in an auditory oddball paradigm in schizophrenia // Psychiatry Research. 2005. N 1–2, Vol. 137. P. 49–59.
  21. Dochin E. Surprise! Surprise? // Psychophysiology. 1981. N 18. P. 493–513.
  22. Blackwood D. H. R., Pirtošek Z., Tomori M., Vodušek D. B. Changes in auditory P3 event–related potential in schizophrenia and depression // British Journal of Psychiatry. 1987. N 2, Vol. 150. P. 154–160.
  23. Boutros N. et al. Auditory evoked potentials, clinical vs. research applications // Psychiatry Research. 1997. N 2–3 (69). P. 183–195.
  24. The Maudsley Family Study, II: Endogenous event–related potentials in familial schizophrenia / Frangou S., Sharma T., Alarcon G., Sigmudsson T., Takei N., Binnie C., Murray R. M. // Schizophrenia Research. 1997. N 1, Vol. 23. P. 45–53.
  25. Gilmore C. S., Clementz B. A., Buckley P. F. Stimulus sequence affects schizophrenia–normal differences in event processing during an auditory oddball task // Cognitive Brain Research. 2005. N 2, Vol. 24. P. 215–227.
  26. Job D. E., Whalley H. C., Johnstone E. C., Lawrie S. M. Grey matter changes over time in high risk subjects developing schizophrenia // NeuroImage. 2005. N 4, Vol. 25. P. 1023–1030.
  27. Salisbury D. F., Collins K. C., McCarley R. W. Reductions in the N1 and P2 auditory event–related potentials in first–hospitalized and chronic schizophrenia // Schizophrenia Bulletin. 2010. N 5, Vol. 36. P. 991–1000.
  28. Clinical correlations of auditory P200 topography and left temporo–central deficits in schizophrenia: a preliminary study / Shenton M. E., Faux S. F., McCarley R. W., Ballinger R., Coleman M., Duffy F. H. // Journal of psychiatric research. 1989. N 1, Vol. 23. P. 13–34.
  29. Stefánsson S. B., Jónsdóttir T. J. Auditory event–related potentials, auditory digit span, and clinical symptoms in chronic schizophrenic men on neuroleptic medication // Biological Psychiatry. 1996. N 1, Vol. 40. P. 19–27.
  30. Williams L. M., Gordon E., Wright J., Bahramali H. Late component ERPs are associated with three syndromes in schizophrenia // The International journal of neuroscience. 2000. N 1–4, Vol. 105. P. 37–52.
  31. ERPs in schizophrenia: effects of antipsychotic medication / Ford J. M., White P. M., Csernansky J. G., Faustman W. O., Roth W. T., Pfefferbaum A. // Biological Psychiatry 1994. N 3, Vol. 36. P. 153–170.
  32. Auditory event–related potentials and clinical scores in unmedicated schizophrenic patients / Laurent A., Garcia-Larréa L., D’Amato T., Bosson J. L., Saoud M., Marie-Cardine M., Maugière F., Dalery J. // Psychiatry Research. 1999. N 3, Vol. 86. P. 229–238.
  33. The auditory N2 component in schizophrenia: relationship to MRI temporal lobe gray matter and to other ERP abnormalities / O’Donnell B. F., Shenton M. E., McCarley R. W., Faux S. F., Smith R. S., Salisbury D. F., Nestor P. G., Pollak S. D., Kikinis R., Jolesz F. A. // Biological psychiatry. N 1–2, Vol. P. 26–40.
  34. Event–related potentials and genetic risk for schizophrenia / Winterer G., Egan M. F., Rädler T., Coppola R., Weinberger D. R. // Biological Psychiatry. 2001. N 6, Vol. 50. P. 407–417.
  35. Muir W. J., Clair D. M. St., Blackwood D. H. Long–latency auditory event related potentials in schizophrenia and in bipolar and unipolar affective disorder // Psychological Medicine. 1991. N 21. P. 867–879.
  36. Балин В. Д., Петров М. В. Фрактальная модель построения картины мира и ее нарушения у больных шизофренией // Вестн. С. Петерб. ун-та. Сер. 16. 2016. Вып. 2. C. 16–26

Information About the Authors

Maksim V. Petrov, PhD in Psychology, Deputy Chief of the Psychology Service, Saint-Petersburg State Budgetary Institution of Health Care «Kashchenko Psychiatric Hospital №1», St.Petersburg, Russia, ORCID: https://orcid.org/0000-0002-4370-7212, e-mail: max.petrov.phd@gmail.com

Aleksandr I. Kolchev, Doctor of Medicine, Professor, Military Medical Academy named after S. M. Kirov, St.Petersburg, Russia, e-mail: a.kolchev1@gmail.com

Boris B. Ershov, PhD in Psychology, Senior Lecturer, North-West State Medical University, St.Petersburg, Russia, e-mail: magus@nxt.ru

Anton N. Gvozdetckii, PhD in Medicine, Assistant Professor of Chair of Psychiatry and Addiction Medicine, North-Western State Medical University named after I.I. Mechnikov, St.Petersburg, Russia, ORCID: https://orcid.org/0000-0001-8045-1220, e-mail: comisora@yandex.ru

Irina V. Golovanova, PhD in Psychology, Senior Researcher, Scientific Center for Cognitive Research, Sirius University of Science and Technology, Federal territory "Sirius", Russia, ORCID: https://orcid.org/0000-0002-0826-6386, e-mail: golovanova.iv@talantiuspeh.ru

Natalia A. Daeva, psychologist, The City Psychoneurological Dispensary No. 7, St.Petersburg, Russia, e-mail: hon73@yandex.ru

Metrics

Views

Total: 167
Previous month: 6
Current month: 4

Downloads

Total: 65
Previous month: 1
Current month: 3