Экспериментальная психология
2012. Том 5. № 1. С. 119–131
ISSN: 2072-7593 / 2311-7036 (online)
Вероятностный метод фильтрации артефактов при адаптивном тестировании
Аннотация
Общая информация
Ключевые слова: адаптивное тестирование, марковские модели, фильтр Калмана
Рубрика издания: Математическая психология
Тип материала: научная статья
Для цитаты: Куравский Л.С., Юрьев Г.А. Вероятностный метод фильтрации артефактов при адаптивном тестировании // Экспериментальная психология. 2012. Том 5. № 1. С. 119–131.
Полный текст
1. Введение
Компьютерное тестирование в настоящее время широко используется в медицине, психологии и образовании с целью диагностики, определения уровня компетенций и пригодности испытуемых для выполнения тех или иных функций, включая контроль качества обучения. Качество тестирования и достоверность его результатов в значительной степени зависят от технологий проведения тестов, которые в последние десятилетия стали предметом активных научных исследований.
В первое время тесты строились на основе классической модели тестирования (Карданова, 2008; Тюменева, 2007; Gregory, 2007; Gulliksen, 1950), в основе которой лежит теория погрешности измерений, заимствованная из физики: полагалось, что измеряемые характеристики имеют некоторые «истинные» значения, искажаемые случайными и систематическими погрешностями. Этот подход получил определенное распространение, однако его практическому применению препятствует ряд существенных недостатков:
-возникают проблемы при сравнении сходных особенностей тестируемых, выявленных с помощью разных методик;
-не решается проблема валидности;
-тестовые баллы становятся недостаточно надежными в областях экстремальных значений;
-технология в целом недостаточно надежна и универсальна.
Для преодоления указанных проблем была разработана новая технология тестирования, основанная на латентно-структурном анализе и названная теорией ответов на вопросы (Item Response Theory – IRT)1 (Тюменева, 2007; Baker, 2001). В ней реализована концепция адаптивного тестирования, согласно которой тестируемому с определенной текущей расчетной оценкой уровня знаний или способностей на каждом шаге тестирования вычисляются и предлагаются задания определенной сложности. Основная концепция новой теории, предложенная Г. Рашем в 1960 году (Rasch, 1980), предполагает, что вероятность правильного ответа на задание определяется разностью уровня знаний или способностей и трудности теста. В зависимости от условий прикладной задачи на практике используются и другие, более сложные модели, построенные на базе данной концепции (Аванесов, 2003; Rasch, 1980; Wright, Stone, 1979; Wright, Masters, 1982).
1 В русскоязычной литературе также используются и другие варианты ее названия: стохастическая теория тестов, математическая теория измерений, современная теория тестирования, теория латентных черт, теория характеристических кривых заданий, теория моделирования и параметризации педагогических тестов и т. д.
При применении технологии IRT возникают следующие проблемы:
-«статичность» оценок: игнорирование того факта, что результат тестирования вследствие усталости испытуемых и других факторов может, вообще говоря, существенно изменяться со временем, принимая различные значения в процессе сеанса тестирования;
-невозможность учета времени, затрачиваемого на решение тестовых задач, при построении расчетных оценок;
-необходимость выполнения достаточно большого числа заданий для получения оценок с приемлемой точностью;
-сложность вычисления распределения вероятностей возможных результатов теста, что необходимо для оценки их надежности;
-сравнительно сложная для практической реализации процедура оценки точности результата, связанная с применением метода максимального правдоподобия и расчетом доверительных интервалов.
Указанные проблемы делают актуальной разработку новых технологий тестирования. В этой работе рассматриваются новые аспекты применения разработанного ранее авторами подхода к адаптивному тестированию (Куравский, Баранов, 2001, 2002; Куравский и др., 2005; Куравский и др., 2003; Куравский и др., 2010; Куравский и др., 2011; Куравский, Юрьев, 2011 а; Куравский, Юрьев, 2011 б; Kuravsky, Malykh, 2004; Kuravsky, Baranov, 2003, 2004, 2005; Kuravsky et al., 2010; Kuravsky et al., 2011), построенного на использовании обучаемых структур в форме марковских моделей с дискретным и непрерывным временем. Его особенностями, обеспечивающими преимущества перед аналогичными способами тестирования, являются:
-выявление и использование при построении расчетных оценок временной динамики изменения способности справляться с заданиями теста;
-возможность учета при построении расчетных оценок времени, затрачиваемого на решение тестовых задач;
-возможность исследования временной динамики знаний или способностей как в дискретной, так и в непрерывной временной шкале;
-меньшее по сравнению с другими подходами количество заданий, которые следует предъявлять испытуемому для получения оценок знаний или способностей с заданной точностью, что ускоряет процесс тестирования;
-получение распределения вероятностей возможных результатов теста в качестве конечного результата;
-развитая техника идентификации параметров моделей.
Одной из наиболее серьезных проблем, возникающих в процессе тестирования, является появление в истории ответов испытуемого искажающих результаты артефактов, обусловленных подсказками, угадыванием и другими формами некорректного целенаправленного вмешательства в процедуру испытаний. Представленная выше технология адаптивного тестирования позволяет бороться с этими явлениями, устраняя артефакты на основе сравнения наблюдаемых и прогнозируемых результатов ответов на вопросы для разных уровней способностей испытуемых. В качестве инструмента для сопоставления в данной работе предлагается использовать фильтр Калмана (Тихонов и др., 2009; Шахтарин, 2010) – нестационарную систему с обратной связью, включающую в себя как составную часть формирующий фильтр, воспроизводящий идеализированную модель поведения.
Выбор фильтра Калмана для устранения артефактов тестирования среди близких по содержанию подходов является оптимальным решением, поскольку он наилучшим образом согласуется с принятой концепцией адаптивного тестирования и контекстом ее использования. В частности, этот фильтр:
-в отличие от фильтра Винера способен обрабатывать текущую информацию об ответах испытуемого в реальном времени, формируя свои оценки сразу же после получения очередного ответа и не требуя полного протокола тестирования, который недоступен до завершения всей процедуры ответов на вопросы;
-в отличие от фильтра Стратоновича использует только линейные методы оценки, наилучшим образом согласующиеся с применяемой линейной дифференциальной моделью адаптивного тестирования, и не приводит к неоправданному усложнению процесса решения;
-в отличие от фильтра Льюинбергера учитывает ошибки наблюдений и обеспечивает оптимальные оценки.
Далее кратко представлен новый подход к адаптивному тестированию, основанный на использовании марковских моделей, поставлена задача фильтрации артефактов с помощью фильтра Калмана и рассмотрены особенности ее решения.
2. Марковские модели адаптивного тестирования
2.1. Структура и математическое описание применяемых марковских моделей с непрерывным временем. Процедура оценки знаний или способностей
Оценка вероятностей различных уровней способностей проводится по результатам тестирования с использованием параметрических математических моделей, описывающихся марковскими случайными процессами с дискретными состояниями и непрерывным и дискретным временем (Овчаров, 1969; Саати, 2010). Дальнейшее изложение относится только к моделям с непрерывным временем. Непосредственно наблюдаемой величиной является трудность выполняемого теста, измеряемая в логитах. Допустимый диапазон значений этой величины делится на несколько интервалов, каждый из которых рассматривается как отдельное состояние xi, i=0,1,…,n, в котором тестируемый может находиться с некоторой вероятностью, переходя из одного состояния в другое по определенным правилам. Длина указанных интервалов определяет разрешающую способность оценок, получаемых в процессе тестирования. В свою очередь, число состояний определяется желаемой разрешающей спообностью оценок и доступным объемом выборки 2.
2 Рассматривая непрерывно изменяющуюся характеристику как дискретную величину, мы теряем часть информации (это имеет место при любой идеализации). Однако эти потери несущественны в случае достаточно больших выборок, когда мы имеем возможность устанавливать длину интервалов состояний так, чтобы она не превышала ошибок измерений.
Как трудности заданий, так и способности тестируемых измеряются в единой безразмерной шкале логитов, выражающей соотношение долей правильных и неправильных ответов. Перевод в шкалу логитов осуществляется по формуле:
где С – значение в шкале логитов, r – вероятность правильного выполнения задания. В случае оценки трудности этот параметр характеризует возможность выполнения определенного задания для всего множества тестируемых, а в случае оценки способностей – результаты определенного тестируемого для всего множества допустимых заданий. Статистические приближения указанных величин получаются после замены в приведенной формуле вероятности r на ее выборочные оценки.
Если обозначить верхнюю и нижнюю границы диапазона возможных значений трудности тестов как Dbot и Dtop, состояние x0 будет соответствовать интервалу от Dbot до Dbot+(D–topDbot)/(n+1), состояние x1 – интервалу от Dbot+(Dtop–Dbot)/(n+1) до Dbot+2(Dtop–Dbot)/(n+1) и т. д.
Модели для описания динамики этих переходов представляются ориентированными графами, в которых вершины3 соответствуют состояниям, а дуги4 соответствуют переходам.
В случае моделей с непрерывным временем процесс тестирования может рассматриваться как случайное блуждание по графу с переходами из одного состояния в другое согласно направлениям дуг. Эти переходы мгновенны и происходят в случайные моменты времени.
Предполагается, что для них выполняются следующие два свойства пуассоновских потоков событий:
-ординарность (поток называется ординарным, если вероятность появления двух и более событий в течение малого интервала времени намного меньше, чем вероятность появления за это же время одного события);
- независимость приращений (это свойство означает, что количества событий, попадающих в два непересекающихся интервала, не зависят друг от друга).
Можно показать, что в рассматриваемых потоках число событий X, попадающих в любой временной интервал длины t, начинающийся в момент t, распределено согласно закону Пуассона:
где Pt,t (X = m) – вероятность появления m событий в течение рассматриваемого интервала, a(t,t) – среднее число событий, попадающих в интервал длины t, начинающийся в момент времени t. Далее будут рассматриваться только стационарные потоки (в которых a(t,t)=ht, h=const). Параметр h называется интенсивностью стационарного потока. Он равен среднему числу событий в единицу времени. Средняя продолжительность времени между двумя смежными событиями в этом случае равна 1/h.
3 Обозначаются как прямоугольники. 4 Обозначаются как стрелки.
Упомянутые выше предположения о свойствах потоков событий обычны для прикладных задач, так как эти потоки (или потоки, близкие к ним по свойствам) часто встречаются на практике благодаря предельным теоремам для потоков событий (Овчаров, 1969; Саати, 2010).
Для моделей с непрерывным временем неизвестными (свободными) параметрами модели являются интенсивности потоков событий. Их значения определяются путем сравнения наблюдаемых и прогнозируемых гистограмм, описывающих распределения частот пребывания в состояниях модели, а именно: вычисляются значения, обеспечивающие наилучшее соответствие наблюдаемых и ожидаемых частот попадания в определенное состояние системы в заданные моменты времени. Прогнозируемые вероятности нахождения в состояниях получаются путем численного интегрирования систем уравнений Колмогорова.
Марковские модели с непрерывным временем и свободными параметрами, которые идентифицируются по данным наблюдений, называются сетями Маркова (Куравский, Баранов, 2002; Куравский и др., 2003; Kuravsky, Baranov, 2003, 2004, 2005).
Для описания того, как вероятности нахождения в заданных состояниях изменяются со временем, применяются сети Маркова, организованные по так называемой схеме «гибели и размножения» 5 (рис. 1). Эта схема представляет собой конечную цепь из n+1 состояния, в которой переходы из состояния xk (k¹0, k¹n) возможны только в предшествующее состояние x или в следующее по порядку состояние x. Из состояний x и x доступны только состояния x1 и xn-1, соответственно.
Рис. 1. Сеть Маркова, представляющая процесс тестирования с непрерывным временем: xi (i=0,1,…,n) – состояния, li (i=0,1,…,n-1) и mi (i=1,2,…,n) – интенсивности переходов
Динамика вероятностей нахождения в различных состояниях указанной схемы описывается следующей системой обыкновенных дифференциальных уравнений Колмогорова:
где p*(t) есть вероятность нахождения в состоянии x* в момент времени t; * – номер состояния; li (i=0,1,…,n-1) и mi (i=1,2,…,n) – интенсивности переходов между состояниями, которые определяются отдельно для каждого из рассматриваемых уровней способностей. Для интегрирования указанной системы необходимо задать начальные условия: p0(0), p1(0),…, n pn(0). Нормализующее условие Σk=0 ()t =1 выполняется в любой момент времени.
5 Она была впервые применена в биологии для анализа динамики роста популяций.
Для упрощения задачи, а также для обеспечения приемлемой процедуры идентификации интенсивности потоков часто полагаются зависящими от индекса i по определенным правилам, включая тривиальный вариант: l0=l1=…=ln-1=l и m1=m2=…=mn=m. Оптимальный выбор подобных зависимостей опирается на технику проверки статистических гипотез. В случае моделей с дискретным временем аналогичные зависимости исследуются для вероятностей переходов.
Процедура адаптивного тестирования заключается в последовательном предъявлении испытуемому задач, трудность которых определяется состоянием сети или цепи Маркова, в котором он находится в данный момент. Если испытуемый, находясь в состоянии xi, решает задачу, он переходит в состояние xi+1, в противном случае – в состояние xi-1. По завершении тестирования он оказывается в одном из состояний x*, наилучшим образом соответствующих его уровню способностей. Принцип выбора очередного теста заключается в выборе задачи, трудность которой примерно соответствует уровню способностей испытуемого. Согласно проведенным наблюдениям и результатам современной теории тестирования, это обеспечивает наилучшую дифференциацию испытуемых по уровню их способностей.
2.2. Идентификация марковских моделей с непрерывным временем
Идентификации марковских моделей проводятся по выборкам испытуемых, отдельно для каждого из рассматриваемых уровней способностей. Каждому уровню способностей Ci, i=1,…,I при этом ставится в соответствие свой уникальный набор оценок параметров модели, что позволяет в дальнейшем выявлять значение этого показателя, наилучшим образом согласующегося с наблюдениями. Таким образом, вероятности и интенсивности переходов являются функциями двух характеристик: уровня способностей и трудности задачи. Число уровней способностей – это дискретный параметр, который задает разрешающую способность оценки данной характеристики и устанавливается при решении каждой прикладной задачи в зависимости от объема выборки испытуемых, имеющейся у исследователя при решении задачи идентификации, и желаемой точности результата.
С каждой изменяющейся со временем гистограммой пребывания в состояниях модели связывается марковский процесс с дискретными состояниями. Статистика Пирсона
где N – число элементов в выборке, pk – прогнозируемая вероятность попадания в k-е состояние модели, а Fk – наблюдаемая частота нахождения в k-м состоянии модели, используется как мера соответствия в том смысле, что ее большие значения означают плохое согласование прогнозируемых и наблюдаемых результатов, а малые значения – хорошее согласование. Для идентификации модели минимизируется сумма указанных статистик в те моменты времени, для которых имеются результаты наблюдений. Наблюдаемые количества попаданий в различные интервалы трудностей задач определяются по результатам тестирования группы испытуемых. В качестве искомых оценок свободных параметров моделей используются значения, обеспечивающие наилучшее соответствие наблюдаемых и прогнозируемых частот попадания в определенное состояние системы в заданные моменты времени.
Доказано, что при выполнении ряда общих условий значения статистики Пирсона X2 , получаемые при подстановке истинных решений, асимптотически описываются распределением c2 с n–l степенями свободы, где l – число определяемых параметров, причем вычисленные значения свободных параметров при увеличении объема выборки сходятся по вероятности к искомому решению (Крамер, 1976). Это позволяет использовать приведенную статистику для проверки гипотезы о том, что полученный прогноз согласуется с результатами наблюдений. Данный способ идентификации свободных параметров называется методом минимума c2 (Крамер, 1976) и дает решения, близкие к полученным, методом максимального правдоподобия.
Используемая процедура вычисления оцениваемых параметров состоит из двух этапов. На подготовительном этапе с помощью электронной таблицы для указанной системы дифференциальных уравнений кодируется численная схема интегрирования, позволяющая вычислять вероятностные функции pk (Куравский, Баранов, 2002; Куравский и др., 2003; Kuravsky, Baranov, 2003). Эти функции вычисляются с некоторым заданным временным шагом. Для вычисления решения с приемлемой точностью оказались достаточными методы Рунге-Кутта или их эквиваленты.
На заключительном этапе запускается численная процедура многомерной нелинейной оптимизации 6 (Куравский, Баранов, 2002; Куравский и др., 2003; Kuravsky, Baranov, 2003), позволяющая получать искомые значения свободных параметров. Полученные оценки свободных параметров рассматриваются как характеристики модели, выявленные в результате наблюдений. Рассмотренный критерий также позволяет сравнивать между собой различные варианты марковских моделей, выбирая среди них оптимальные.
2.3. Поиск оптимального решения
Зная состояние модели, в котором оказался тестируемый после решения последней предложенной ему задачи, и рассчитав вероятность нахождения в этом состоянии в заданный момент времени для каждого из рассматриваемых уровней способностей с помощью дифференциальных зависимостей (см. раздел 2.1), можно оценить вероятности пребывания в указанном конечном состоянии по формуле Байеса:
где Сi – событие, связанное с наличием у тестируемого i-го уровня способностей (i=1,…,I), S – событие, связанное с нахождением в заданном конечном состоянии модели в заданный момент времени, P(Ci) – априорная вероятность появления i-го уровня способностей у тестируемого, P(S|Ci) – вероятность нахождения в заданном конечном состоянии модели в заданный момент времени при наличии i-го уровня способностей, P(Ci|S) – вероятность i-го уровня способностей при условии нахождения в заданном конечном состоянии модели в заданный момент времени.
Уровень способностей, при котором достигается наибольшая условная вероятность
P(Cmax|S) = max{P(Ci|S)}i=1,...,I , дает искомую оценку. Распределение вероятностей {P(Ci|S)} , которое является результатом решения задачи, позволяет оценить степень надежности этой оценки.
6 В настоящее время предлагается достаточно много программных продуктов для решения задач численной оптимизации. В частности, пользователи электронной таблицы Excel могут применять программное обеспечение компании Frontline Systems, Inc.
Как указано в разделе 2.1, разрешающая способность полученной оценки определяется длиной интервала между соответствующими смежными уровнями способностей в логитах, которая, в свою очередь, при условии постоянства таких длин задается числом уровней способностей I.
3. Математическая постановка и решение задачи фильтрации Калмана при адаптивном тестировании с использованием марковских моделей
В случае обсуждаемого варианта адаптивного тестирования наблюдаемый процесс представляет историю пребывания в состояниях марковских моделей. Он выражается вектором x(t)=(x0(t),x1(t),…,xn(t))T, в котором в каждый момент времени один, и только один, из компонентов xi(t), i=0,…,n, соответствующий состоянию, где находится испытуемый, равен единице, а остальные компоненты равны нулю. В свою очередь, исследуемый информационный процесс P(t)=(p0(t),p1(t),…,pn(t))T представляет динамику изменения вероятностей пребывания в состояниях модели.
Уравнения информационного и наблюдаемого процессов, используемые при построении многомерного непрерывного фильтра Калмана для моделей рассматриваемого типа 7 dt имеют следующий вид (Тихонов и др., 2009; Шахтарин, 2010):
где на случайные ошибки наблюдений Е(v(t)) накладываются условия E(v(t))=0 и E(v(t)vT(t))=Rd(t–t), матрица формирующего фильтра F размерности (n+1)´(n+1) есть
а R – симметричная положительно определенная матрица, которую мы далее будем полагать не зависящей от времени. При проведении практических расчетов эта матрица может заменяться на одну их своих выборочных оценок Rˆ , полученных для каждого из рассматриваемых уровней способностей на основе результатов наблюдений.
Дифференциальное уравнение фильтра Калмана, определяющее несмещенную оценку исследуемого процесса 8 Pˆ ()t )= (pˆ ()t , pˆ ()t ,..., pˆ ()t ) с минимальным средним квадратом ошибки e(t)=P(t)– , представляется в виде:
где K(t) – матричный коэффициент усиления фильтра Калмана.
7 Особенностями этих моделей являются: отсутствие информационного шума, равенство размерностей информационного процесса и процесса наблюдений и единичная матрица наблюдений.
8 Выход фильтра Калмана.
В классическом случае этот коэффициент задается уравнением:
Kc(t)=U(t)R-1,
в котором ковариационная матрица ошибок U(t)=E(e(t)eT(t)) является решением одной из матричных форм уравнения Риккати:
Однако, поскольку в рассматриваемой задаче компоненты оценки информационного процесса Pˆ ()t представляют собой нормированные величины – вероятности пребывания в состояниях сети Маркова c суммой, равной единице, – необходима коррекция коэффициента усиления Kc(t), обеспечивающая поддержание данного условия.
Если нормализующее условие å npˆ k ()t =1 выполняется в начальный момент времени k=0 t=0, а правая часть уравнения фильтра Калмана такова, что при t³0 обеспечивается равенство, то указанное нормализующее условие выполняется в любой момент времени t³0. Очевидно, что условие ¦ dtk 0 равносильно равенству нулю суммы компонентов вектора, заданного матричным выражением ˆ () K t (-Pˆ ()t ). Поскольку нулевая сумма компонентов вектора FPˆ ()t обеспечивается приведенной выше структурой матрицы F, то для равенства нулю суммы компонентов всего указанного матричного выражения необходимо и достаточно нулевой суммы компонентов вектора Kc () () (x t P()t ).
Сумма компонентов вектора x()t -Pˆ()t равна нулю по условиям рассматриваемой задачи, так как эти величины интерпретируются как вероятности. Учитывая данный факт, несложно доказать, что достаточным условием нулевой суммы компонентов вектора
Kc () () t (x t -Pˆ()t )является равенство сумм элементов матрицы Kc (t) во всех ее столбцах. Таким образом, если матричный коэффициент усиления Kc(t) в уравнении фильтра Калмана заменить на близкий к нему нормализованный коэффициент Kn(t) с равными во всех столбцах суммами элементов, то условие dpˆ t будет выполнено. Матрицу K (t) можно получить, домножив справа матрицу Kc(t) на диагональную матрицу D, элементы которой вычисляются по формуле:
где djj – j-й диагональный элемент матрицы D; klm, l,m=0,…,n – элементы матрицы K (t); k– сумма элементов в j-м столбце матрицы K (t). Такая замена корректна, если Kn(t)=U(t)R-1D лежит в допустимых границах вариаций коэффициента Kc(t), обусловленных ошибками выборочных оценок матрицы R, что проверяется с помощью подходящих критериев согласия.
В частности, для этого можно:
-сгенерировать множество выборочных оценок ковариационной матрицы R, соответствующих доверительным интервалам для заданного объема выборки N;
-вычислить, используя эти оценки, выборку матриц {K(t)}; nii=1,..,M
-вычислить выборочное распределение евклидовой нормы разностей классического и нормированного коэффициентов усиления;
-учитывая, что полученное выборочное распределение при достаточно большом числе элементов в матричных коэффициентах усиления приблизительно соответствует нормальному, построить для него выборочные оценки математического ожидания и дисперсии и оценить вероятность p превышения евклидовой нормы разности
Kn ()t -Kc ()t.
Если p³0,05, то использование нормализованного коэффициента Kn(t) является допустимым. Рассмотренный метод может быть совмещен с процедурой кластеризации, использующей самоорганизующиеся карты Кохонена (Куравский и др., 2011; Kuravsky et al., 2011).
В соответствии с представленной выше процедурой адаптивного тестирования, фильтрация Калмана выполняется автономно для каждого из уровней способностей, учитываемых при постановке решаемой задачи.
В заключение следует отметить, что существует ряд интересных аналогий между фильтром Калмана и скрытыми марковскими моделями (Куравский и др., 2010; Kuravsky et al., 2010), частично рассмотренных в обзорах зарубежных авторов (см., напр.: Roweis, Ghahramani, 1999).
4. Программная реализация
Рассмотренная процедура фильтрации реализована в среде графического программирования LabVIEW (см. рис. 2). При этом интегрирование матричного уравнения Риккати и уравнения фильтра Калмана выполнено численными методами 9, а для оценки начального состояния ковариационной матрицы ошибок U(0), о которой наблюдения дают, как правило, мало полезной информации, использованы следующие предположения:
-E(e(0))=0;
-компоненты вектора ошибок фильтрации e(0) статистически независимы;
-дисперсии компонентов вектора ошибок фильтрации e(0) пропорциональны соответствующим дисперсиям компонентов случайного шума наблюдения v(t).
5. Основные результаты и выводы
1. Разработан и программно реализован вероятностный метод фильтрации искажающих результаты артефактов при адаптивном тестировании, построенном на использовании обучаемых структур в форме марковских моделей с непрерывным временем.
2. Устранение артефактов, обусловленных различными формами некорректного целенаправленного вмешательства в процедуру испытаний, выполняется на основе сравнения наблюдаемых и прогнозируемых результатов ответов на вопросы для разных уровней способностей испытуемых с помощью фильтра Калмана, адаптированного для задачи адаптивного тестирования.
3. Выбор фильтра Калмана для устранения артефактов является оптимальным среди близких по содержанию подходов, поскольку он наилучшим образом согласуется с принятой концепцией адаптивного тестирования и контекстом ее использования.
Рис. 2. Результаты фильтрации Калмана для марковской модели с пятью состояниями
Литература
- Аванесов В. С. Педагогическое измерение латентных качеств // Педагогическая диагностика. 2003. № 4. С. 69–78.
- Карданова Е. Ю. Моделирование и параметризация тестов: основы теории и приложения. М.: ФГУ «Федеральный центр тестирования», 2008.
- Крамер Г. Математические методы статистики. М.: Мир, 1976.
- Куравский Л. С., Баранов С. Н. Синтез сетей Маркова для прогнозирования усталостного разрушения // Нейрокомпьютеры: разработка и применение. 2002. № 11. С. 29–40.
- Куравский Л. С., Баранов С. Н. Применение нейронных сетей для диагностики и прогнозирования усталостного разрушения тонкостенных конструкций // Нейрокомпьютеры: разработка и применение. 2001. № 12. С. 47–63.
- Куравский Л. С., Баранов С. Н., Корниенко П. А. Обучаемые многофакторные сети Маркова и их применение для исследования психологических характеристик // Нейрокомпьютеры: разработка и применение. 2005. № 12. С. 65–76.
- Куравский Л. С., Баранов С. Н., Малых С. Б. Нейронные сети в задачах прогнозирования, диагностики и анализа данных: Учеб. пособие. М.: РУСАВИА, 2003.
- Куравский Л. С., Баранов С. Н., Юрьев Г. А. Синтез и идентификация скрытых марковских моделей для диагностики усталостного разрушения // Нейрокомпьютеры: разработка и применение. 2010. № 12. С. 20–36.
- Куравский Л. С., Ушаков Д. В., Мармалюк П. А., Панфилова А. С. Исследование факторных влияний на развитие психологических характеристик с применением нового подхода к оценке адекватности моделей наблюдениям // Информационные технологии. 2011. № 11 (в печати).
- Куравский Л. С., Юрьев Г. А. Адаптивное тестирование как марковский процесс: модели и их идентификация // Нейрокомпьютеры: разработка и применение. 2011 а. № 2. С. 21–29.
- Куравский Л. С., Юрьев Г. А. Использование марковских моделей при обработке результатов тестирования // Вопросы психологии. 2011 б. № 2. С. 98–107.
- Овчаров Л. А. Прикладные задачи теории массового обслуживания. М.: Машиностроение. 1969.
- Саати Т. Л. Элементы теории массового обслуживания и ее приложения. М.: ЛИБРОКОМ, 2010.
- Тихонов В. И., Шахтарин Б. И., Сизых В. В. Случайные процессы. Примеры и задачи. Т. 5. Оценка сигналов, их параметров и спектров. Основы теории информации. М.: Горячая линия–Телеком, 2009.
- Тюменева Ю. А. Психологическое измерение. М.: Аспект-Пресс, 2007.
- Шахтарин Б. И. Случайные процессы в радиотехнике. Т. 1. Линейные преобразования. М.: Горячая линия–Телеком, 2010.
- Baker F. B. The Basics of Item Response Theory. ERIC Clearinghouse on Assessment and Evaluation, University of Maryland, College Park, MD, 2001.
- Gregory R. J. Psychological testing: History, principles, and applications (5th edition). N.Y.: Pearson, 2007.
- Gulliksen H. Theory of Mental Tests. John Wiley & Sons Inc, 1950.
- Kuravsky L. S., Malykh S. B. Application of Markov models for analysis of development of psychological characteristics // Australian Journal of Educational & Developmental Psychology. 2004. V. 2. P. 29–40.
- Kuravsky L. S., Baranov S. N. Condition monitoring of the structures suffered acoustic fatigue failure and forecasting their service life // Proc. Condition Monitoring 2003, Oxford, United Kingdom. P. 256–279, July 2003.
- Kuravsky L. S., Baranov S. N. Neural networks in fatigue damage recognition: diagnostics and statistical analysis // Proc. 11th International Congress on Sound and Vibration, St.-Petersburg, Russia. P. 2929– 2944, July 2004.
- Kuravsky L. S., Baranov S. N. The concept of multifactor Markov networks and its application to forecasting and diagnostics of technical systems // Proc. Condition Monitoring 2005, Cambridge, United Kingdom. P. 111–117, July 2005.
- Kuravsky L. S., Baranov S. N., Yuryev G. A. Synthesis and identification of hidden Markov models based on a novel statistical technique in condition monitoring // Proc. 7th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, Stratford-upon-Avon, England, June 2010.
- Kuravsky L. S., Marmalyuk P .A., Panfilova A. S. Estimation of goodness-of-fit measures for identification of unrestricted factor models employing arbitrarily distributed observed data // Proc. 8th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, Cardiff, UK, June 2011.
- Rasch G. Probabilistic models for some intelligence and attainment tests // Copenhagen, Danish Institute for Educational Research / Expanded edition with foreword and afterword by B. D. Wright. Chicago: The University of Chicago Press. 1980.
- Roweis S., Ghahramani Z. A unifying review of linear Gaussian models // Neural Computation. V. 11. № 2. 1999. P. 305–345.
- Wright B. D., Masters G. N. Rating scale analysis. Rasch measurements. Chicago: MESA Press, 1982.
- Wright B. D., Stone M. N. Best Test Design. Chicago: MESA Press, 1979.
Информация об авторах
Метрики
Просмотров
Всего: 3913
В прошлом месяце: 15
В текущем месяце: 12
Скачиваний
Всего: 770
В прошлом месяце: 3
В текущем месяце: 1