Метаэвристические методы решения двухуровневой стохастической задачи размещения предприятий

332

Аннотация

Формулируется стохастическая двухуровневая задача размещения предприятий, в которой фигурируют два игрока: лидер и последователь. Первым свои предприятия размещает лидер, а затем последователь. Доход, получаемый от потребителей, предполагается случайным. На этапе принятия решения игрокам известен только закон распределения случайного дохода. Цель обоих игроков состоит в максимизации гарантированной с заданной вероятностью прибыли. Для случая гауссовского распределения случайных параметров задача сводится к детерминированной двухуровневой задаче. Для решения полученной задачи предлагаются два алгоритма, основанные на адаптации метаэвристических методов: метода имитации отжига и метода поиска с чередующимися окрестностями. На примере задачи размещения электростанций проводится сравнение эффективности двух разработанных алгоритмов.

Общая информация

Ключевые слова: Двухуровневая задача, стохастическая задача, квантиль, окрестности, метод имитации отжига, метод чередующихся окрестностей

Рубрика издания: Методы оптимизации

Тип материала: научная статья

Для цитаты: Иванов С.В., Пономаренко А.Н. Метаэвристические методы решения двухуровневой стохастической задачи размещения предприятий // Моделирование и анализ данных. 2019. Том 9. № 2. С. 99–108.

Фрагмент статьи

Задача конкурентного размещения предприятий описываются ситуацию, когда двое игроков в установленном порядке размещают свои предприятия с целью получения максимальной прибыли. Постановка данной задачи, методы ее исследования и ряд алгоритмов ее решения описаны в работе.

Литература

  1. Береснев В.Л., Мельников А.А. Приближенные алгоритмы для задачи конкурентного размещения предприятий//Дискрет. анализ и исслед. операций. 2010. Т. 17. №6. С. 3-10.
  2. Иванов С.В. Морозова М.В. Стохастическая задача конкурентного размещения предприятий с квантильным критерием // АиТ. 2016. № 3. С. 109-122.
  3. Кибзун А.И., Кан Ю.С. Задачи стохастического программирования с вероятностными критериями. М.: Физматлит, 2009.
  4. Bard J.F. Practical Bilevel Optimization: Algorithms and Applications. // Dordrecht: Kluwer Acad. Publ., 1998.
  5. Dempe S, Kalashnikov V, Pérez-Valdés GA, Kalashnykova N. Bilevel Programming Problems - Theory, Algorithms and Applications to Energy Network. // Springer Verlag: Berlin, Heidelberg, 2015.
  6. Melnikov A., Beresnev V. Upper Bound for the Competitive Facility Location Problem with Quantile Criterion // Lecture Notes in Computer Science. 2016. V. 9869. P. 373-387.
  7. Snyder L.V. Facility location under uncertainty: a review // IIE Transact. 2006. V. 38. No. 7. P. 547–564.

Информация об авторах

Иванов Сергей Валерьевич, кандидат психологических наук, доцент, Московский авиационный институт (национальный исследовательский университет), Москва, Россия, e-mail: sergeyivanov89@mail.ru

Пономаренко Андрей Николаевич, студент магистратуры, Московский авиационный институт (национальный исследовательский университет), Москва, Россия, e-mail: Pinokio.1995@mail.ru

Метрики

Просмотров

Всего: 480
В прошлом месяце: 4
В текущем месяце: 0

Скачиваний

Всего: 332
В прошлом месяце: 3
В текущем месяце: 0