Моделирование и анализ данных
2021. Том 11. № 2. С. 5–30
doi:10.17759/mda.2021110201
ISSN: 2219-3758 / 2311-9454 (online)
Принципы построения программно-аппаратного комплекса для интеллектуальной поддержки экипажа и оценки уровня его подготовки
Аннотация
Общая информация
Ключевые слова: операторы сложных технических систем, интеллектуальная поддержка экипажа, оценка уровня подготовки экипажа, видеоокулография, метрика правдоподобия, метрика Кохонена
Рубрика издания: Анализ данных
Тип материала: научная статья
DOI: https://doi.org/10.17759/mda.2021110201
Для цитаты: Грешников И.И., Куравский Л.С., Юрьев Г.А. Принципы построения программно-аппаратного комплекса для интеллектуальной поддержки экипажа и оценки уровня его подготовки // Моделирование и анализ данных. 2021. Том 11. № 2. С. 5–30. DOI: 10.17759/mda.2021110201
Литература
- Aircraft trajectory clustering techniques using circular statistics. Yellowstone Conference Center, Big Sky, Montana, 2016. IEEE.
- Bastani V., Marcenaro L., Regazzoni C. Unsupervised trajectory pattern classification using hier- archical Dirichlet Process Mixture hidden Markov model // 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) / IEEE. 2014. Pp. 1–6.
- Eerland W.J., Box S. Trajectory Clustering, Modelling and Selection with the focus on Airspace Protection // AIAA Infotech@ Aerospace. AIAA, 2016. Pp. 1–14.
- Enriquez M. Identifying temporally persistent flows in the terminal airspace via spectral clus- tering // Tenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2013) / Federal Aviation Administration (FAA) and EUROCONTROL. Chicago, IL, USA: 2013. June 10–13.
- Enriquez M., Kurcz C. A Simple and Robust Flow Detection Algorithm Based on Spectral Clus- tering // International Conference on Research in Air Transportation (ICRAT) / Federal Aviation Administration (FAA) and EUROCONTROL. – Berkeley, CA, USA: 2012. May 22–25.
- Faure C., Bardet J.M., Olteanu M., Lacaille J. Using Self-Organizing Maps for Clustering and Labelling Aircraft Engine Data Phases. In: WSOM (2017): 96–103.
- Gaffney S., Smyth P. Joint probabilistic curve clustering and alignment // In Advances in Neural Information Processing Systems. Vol. 17. Cambridge, MA: MIT Press, 2005. Pp. 473–480.
- Gaffney S., Smyth P. Trajectory clustering with mixtures of regression models // Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining. 1999. Pp. 63–72.
- Gariel M., Srivastava A., Feron E. Trajectory clustering and an application to airspace monitoring // IEEE Transactions on Intelligent Transportation Systems. 2011. Vol. 12, no. 4. Pp. 1511–1524.
- Grevtsov N. Synthesis of control algorithms for aircraft trajectories in time optimal climb and descent // Journal of Computer and Systems Sciences International. 2008. Vol. 47, no. 1. Pp. 129–138.
- Kuravsky L.S. and Yuryev G.A. A novel approach for recognizing abnormal activities of opera- tors of complex technical systems: three non-standard metrics for comparing performance pat- terns, International Journal of Advanced Research in Engineering and Technology (IJARET), 11(4), 2020, pp. 119–136. http://www.iaeme.com/IJARET/issues.asp?JType=IJARET&V- Type=11&IType=4
- Kuravsky L.S., Yuryev G.A. Detecting Abnormal Activities of Operators of Complex Technical Systems and their Causes Basing on Wavelet Representations, International Journal of Civil En- gineering and Technology (IJCIET) 10(2), 2019, pp. 724–742. http://www.iaeme.com/IJCIET/ issues.asp?JType=IJCIET&VType=10&IType=2.
- Kuravsky L.S., Yuryev G.A., Zlatomrezhev V.I. New approaches for assessing the activities of op- erators of complex technical systems. Eksperimental’naya psikhologiya = Experimental psychol- ogy (Russia), 2019, vol. 12, no. 4, pp. 27–49. doi:10.17759/exppsy.2019120403.
- Kuravsky L.S., Yuryev G.A., Zlatomrezhev V.I., Yuryeva N.E. Assessing the Aircraft Crew Actions with the Aid of a Human Factor Risk Model. Eksperimental’naya psikhologiya = Experimen- tal Psychology (Russia), 2020. Vol. 13, no. 2, pp. 153–181. DOI: https://doi.org/10.17759/ex- ppsy.2020130211.
- Laxhammar R., Falkman G. Online learning and sequential anomaly detection in trajecto- ries // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2014. Vol. 36, no. 6. Pp. 1158–1173.
- Li Z., et al. Incremental clustering for trajectories // Database Systems for Advanced Applications. Lecture Notes in Computer Science. 2010. Vol. 5982. Pp. 32–46.
- Liu H., Li J. Unsupervised multi-target trajectory detection, learning and analysis in complicated environments // 2012 21st International Conference on Pattern Recognition (ICPR) / IEEE. 2012. Pp. 3716–3720.
- Rintoul M., Wilson A. Trajectory analysis via a geometric feature space approach // Statistical Analysis and Data Mining: The ASA Data Science Journal. 2015.
- Wei J., et al. Design and Evaluation of a Dynamic Sectorization Algorithm for Terminal Air- space // Journal of Guidance, Control, and Dynamics. 2014. Vol. 37, no. 5. Pp. 1539–1555.
- Wilson A., Rintoul M., Valicka C. Exploratory Trajectory Clustering with Distance Geometry // International Conference on Augmented Cognition /Springer. 2016. Pp. 263–274.
- Отчёт о НИР «Разработка математических моделей и методов оценки уровня подготовки экипажа на основе анализа параметров полета, поступающих в процессе выполнения лет- ных упражнений и данных видеоокулографии», ГосНИИАС, Москва, 2020.
Информация об авторах
Метрики
Просмотров
Всего: 381
В прошлом месяце: 4
В текущем месяце: 4
Скачиваний
Всего: 94
В прошлом месяце: 2
В текущем месяце: 1