Psychophysiological and molecular genetic correlates of fatigue

919

Abstract

The article is devoted to a theoretical overview in the field of fatigue, and in particular to recent data on psychophysiological and molecular-genetic correlates of fatigue. Nowadays there exist many methods used to assess fatigue and other functional states: subjective, behavioral and physiological methods. Earlier the studies in the area of fatigue were mainly focused on looking for an objective indicator. The current research focuses on an integral approach. Over recent years the significant progress in molecular biology has been achieved, which provided a significant impact on quality and scope of investigations. Now we can find numerous researches which reflect the link between the presence of certain polymorphisms and expression of behavioral patterns or physiological reactions. Thus, in the present study we make an attempt to reflect the existing psycho-physiological and molecular-genetic correlates of fatigue.

General Information

Keywords: EEG, fatigue, cognitive load, dopamine, serotonin

Journal rubric: Neurosciences and Cognitive Studies

DOI: https://doi.org/10.17759/jmfp.2016050403

For citation: Polikanova I.S., Leonov S.V. Psychophysiological and molecular genetic correlates of fatigue [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2016. Vol. 5, no. 4, pp. 24–35. DOI: 10.17759/jmfp.2016050403. (In Russ., аbstr. in Engl.)

References

  1. Kulikova M.A. et al. Vlijanie funkcional'nogo polimorfizma Val158Met katehol-O-metiltransferazy na fizicheskuju agressivnost' [Effect of functional catechol-o-methyltransferase val158met polymorphism on physical aggression]. Bjulleten' jeksperimental'noj biologii i mediciny [Bulletin of experimental biology and medicine], 2008. Vol. 145, no. 1, pp. 68-71. (In Russ.).
  2. Nikolls Dzh.G. et al. Ot nejrona k mozgu [From neuron to brain]. Moscow: Izdatel'stvo LKI, 2008. 672 p. (In Russ.).
  3. Polikanova I.S., Sergeev A.V. Vlijanie dlitel'noj kognitivnoj nagruzki na parametry JeJeG [Elektronnyi resurs] [The effect of long-term cognitive load on the EEG parameters]. Nacional'nyj psihologicheskij zhurnal [National psychological journal], 2014. Vol. 1. no. 13, pp. 84-92. URL: http://cyberleninka.ru/article/n/vliyanie-dlitelnoy-kognitivnoy-nagruzki-na-parametry-eeg (Accessed: 10.01.2017). (In Russ., Abstr. in Engl.).
  4. Zinchenko Yu.P. et al. Psikhologiya sporta [Sports psychology]. Moscow: Izd-vo Mosk. un-ta, 2011. 424 p.(In Russ.)
  5. Erisman F.F. Professional'naya gigiena ili gigiena umstvennogo i fizicheskogo truda [Professional hygiene or hygiene of mental and physical labor]. Spb.: Tip. M.M. Stasyulevicha, 1877. 406 p. (In Russ.).
  6. Kidd K.K. et al. A global survey of haplotype frequencies and linkage disequilibrium at the DRD2 locus. Human Genetics, 1998. Vol. 103, no. 2, pp. 211–227. doi: 10.1007/s004390050809
  7. Goljahani A. et al. A novel method for the determination of the EEG individual alpha frequency. Neuroimage, 2012. Vol. 60, no. 1, pp. 774–786. doi: 10.1016/j.neuroimage.2011.12.001
  8. Adayev T., Ranasinghe B., Banerjee P. Transmembrane signaling in the brain by serotonin, a key regulator of physiology and emotion. Bioscience Reports, 2005. Vol. 25, no. 5–6, pp. 363–385. doi: 10.1007/s10540-005-2896-3
  9. Sysoeva O.V. et al. Aggression and 5HTT polymorphism in females: Study of synchronized swimming and control groups. International Journal of Psychophysiology, 2009. Vol. 72, no. 2. pp. 173–178. doi: 10.1016/j.ijpsycho.2008.12.005
  10. Jones G. et al. Aggressive behaviour in patients with schizophrenia is associated with catechol-O-methyltransferase genotype. The British Journal of Psychiatry, 2001. Vol. 179, no. 4, pp. 351–355. doi: 10.1192/bjp.179.4.351
  11. Strous R.D. et al. Analysis of a functional catechol O-methyltransferase gene polymorphism in schizophrenia: evidence for association with aggressive and antisocial behavior. Psychiatry Research, 1997. Vol. 69, no. 2–3, pp. 71–77. doi: 10.1016/S0165-1781(96)03111-3
  12. Lachman H.M. et al. Association between catechol O-methyltransferase genotype and violence in schizophrenia and schizoaffective disorder [Elektronnyi resurs]. American Journal of Psychiatry, 1998. Vol. 155, no. 6, pp. 835–837. Available at: http://ajp.psychiatryonline.org/doi/pdf/10.1176/ajp.155.6.835  (Accessed 11.01.2017).
  13. Bolton J.L. et al. Association between polymorphisms of the dopamine receptor D2 and catechol-o-methyl transferase genes and cognitive function. Behavior Genetics, 2010. Vol. 40, no. 5, pp. 630–638. doi: 10.1007/s10519-010-9372-y
  14. Narita M. et al. Association between serotonin transporter gene polymorphism and chronic fatigue syndrome. Biochemical and Biophysical Research Communications, 2003. Vol. 19, no. 11, pp. 1348–1351. doi: 10.1002/mds.20191
  15. Blum K. et al. Association of polymorphisms of dopamine D2 receptor (DRD2), and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors (SAB). Molecular Psychiatry, 1997. Vol. 2, no. 1, pp. 239–246. doi: 10.1016/S0006-3223(97)88120-6
  16. Balaban C.D. Neural substrates linking balance control and anxiety. Physiology&Behavior, 2002. Vol. 77, no. 4–5, pp. 469–475. doi: 10.1016/S0031-9384(02)00935-6
  17. Blomstrand E. Amino acids and central fatigue. Amino Acids, 2001. Vol. 20, no. 1, pp. 25–34. doi: 10.1007/s007260170063
  18. Boksem M.A.S., Meijman T.F., Lorist M.M. Mental fatigue, motivation and action monitoring. Biological Psychology, 2006. Vol. 72, no. 2, pp. 123–132. doi: 10.1016/j.biopsycho.2005.08.007
  19. Gosso M.F. et al. Catechol O-methyl transferase and dopamine D2 receptor gene polymorphisms: evidence of positive heterosis and gene-gene interaction on working memory functioning. The American Journal of Human Genetics, 2008. Vol. 16, pp. 1075–1082. doi: 10.1038/ejhg.2008.57
  20. Cheng S.Y., Hsu H.T. Mental Fatigue Measurement Using EEG. Risk Management Trends. Ed. By Giancarlo Nota. 2011. pp. 266.
  21. Binnie C.D. et al. Clinical neurophysiology: Electroencephalography, Paediatric Neurophysiology, Special Techniques and Applications. Vol. 2. Amsterdam; London: Elsevier, 2003. 993 p.
  22. Barnett J.H. et al. Cognitive effects of genetic variation in monoamine neurotransmitter systems: a population-based study of COMT, MAOA, and 5HTTLPR. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 2011. Vol. 156, no. 2, pp. 158–167. doi: 10.1002/ajmg.b.31150
  23. Thompson J. et al. D2 dopamine receptor gene (DRD2) TaqI A polymorphism: Reduced D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics, 1997. Vol. 7, no. 6, pp. 479–484.
  24. Davis J.M. Carbohydrates, branched-chain amino acids, and endurance: the central fatigue hypothesis. International journal of sport nutrition, 1995. Vol. 5, no. s1. pp. S29–S38.
  25. Davis J.M., Alderson N.L., Welsh R.S. Serotonin and central nervous system fatigue: nutritional consideration. The American Journal of Clinical Nutrition, 2000. Vol. 72, no. 2, pp. 573–578.
  26. Davis J.M., Bailey S.P. Possible mechanisms of central nervous system fatigue during exercise. Medicine and Science in Sport and Exercise, 1997. Vol. 29, no. 1, pp. 45–57. doi: 10.1097/00005768-199701000-00008
  27. Tsai S.J. et al. Dopamine D2 receptor and N-methyl-D-aspartate receptor 2B subunit genetic variants and intelligence. Neuropsychobiology, 2002. Vol. 45, no. 3, pp. 128–130. doi: 10.1159/000054951
  28. Trejo L.J. et al. EEG-based Estimation of Cognitive Fatigue [Elektronnyi resurs]. Proceedings of Symposium OR05 Defense and Security, 2005. Vol. 5797, pp. 105–115. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.330.2239&rep=rep1&type=pdf (Accessed 10.01.2017)
  29. Trejo L.J. et al. EEG-Based Estimation of Mental Fatigue: Convergent Evidence for a Three-State Model. Foundations of Augmented Cognition / Eds. D.D. Schmorrow, L.M. Reeves. Berlin: Springer,, 2007. Vol. 4565, pp. 201–211.
  30. Epstein H.T. EEG developmental stages. Developmental Psychobiology, 1980. Vol. 13, no. 6, pp. 629–631. doi: 10.1002/dev.420130608
  31. Fatigue as a Window to the Brain. Ed. By DeLuca E. Cambridge, London: The MIT Press, 2005. P. 357.
  32. Fernstrom J.D., Fernstrom M.H. Exercise, serum free tryptophan, and central fatigue. Journal of Nutrition, 2006. Vol. 136, no. 2, pp. 553–559.
  33. Foley T.E., Fleshner M. Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. NeuroMolecular Medicine, 2008. Vol. 10, no. 2, pp. 67–80. doi: 10.1007/s12017-008-8032-3
  34. Joyce N.J. et al. Human striatal dopamine receptors are organized in compartments [Elektronnyi resurs]. PNAS, 1986. Vol. 83, no. 20, pp. 8002–8006. Available at: https://www.researchgate.net/profile/Jeffrey_Joyce/publication/20211466_Human_striatal_dopamine_receptors_are_organized_in_patches/links/00b495169e8fe12569000000.pdf (Accessed 11.01.2017).
  35. Reuter M. et al. Identification of first candidate genes for creativity: A pilot study. Brain Research, 2006. Vol. 1069, no. 1, pp. 190–197. doi: 10.1016/j.brainres.2005.11.046
  36. Kaasinen V. et al. Insular dopamine D2 receptors and novelty seeking personality in Parkinson's disease. Movement Disorders, 2004. Vol. 19, no. 11, pp. 1348–1351. doi: 10.1002/mds.20191
  37. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 1999. Vol. 29, no. 2–3, pp. 169–195. doi: 10.1016/S0165-0173(98)00056-3
  38. Klimesch W. EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 1997. Vol. 26, no. 1–3, pp. 319–340. doi: 10.1016/S0167-8760(97)00773-3
  39. Knight J.L., Kantowitz B.H. Speed-accuracy tradeoff in double stimulation: Effects on the first response. Memory & Cognition, 1974. Vol. 2, no. 3, pp. 522–532. doi: 10.3758/BF03196915
  40. Lal S., Bekiaris E. The Reliability of Sensing Fatigue from Neurophysiology [Elektronnyi resurs]. Auswireless Conference, University of Technology, Sydney. 2007. Available at: https://opus.lib.uts.edu.au/handle/2100/87 (Accessed 10.01.2017).
  41. Lesch K.P., Merschdorf U. Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behavioral Sciences & the Law, 2000. Vol. 18, no. 5, pp. 581–604. doi: 10.1002/1099-0798(200010)18:5<581::AID-BSL411>3.0.CO;2-L
  42. Lorist M.M., Boksem M.A.S., Ridderinkhof K.R. Impaired cognitive control and reduced cingulate activity during mental fatigue. Cognitive Brain Research, 2005. Vol. 24, no. 2, pp. 199–205. doi: 10.1016/j.cogbrainres.2005.01.018
  43. Meeusen R., Watson P. Amino acids and the brain: do they play a role in “central fatigue”? International journal of sport nutrition and exercise, 2007. Vol. 17, pp. 37–46. doi: 10.1123/ijsnem.17.s1.s37
  44. Lorist M.M. et al. Mental fatigue and task control: Planning and preparation. Psychophysiology, 2000. Vol. 37, no. 5, pp. 614–625. doi: 10.1111/1469-8986.3750614
  45. Murataa A., Uetakeb A., Takasawab Y. Evaluation of mental fatigue using feature parameter extracted from event-related potential. Journal of Industrial Ergonomics, 2005. Vol. 35, no. 8, pp. 761–770. doi: 10.1016/j.ergon.2004.12.003
  46. Newsholme E.A., Blomstrand E. Tryptophan 5-hydroxytryptamine and a possible explanation for central fatigue. Advances in Experimental Medicine and Biology, 1995. Vol. 384, pp. 315–320.
  47. Newsholme E.A., Blomstrand E., Ekblom B. Physical and mental fatigue: metabolic mechanisms and importance of plasma amino acids. British Medical Bulletin, 1992. Vol. 48, no. 3, pp. 477–95. doi: 10.1093/oxfordjournals.bmb.a072558
  48. Nieoullon A. Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 2002. Vol. 67, no. 1, pp. 53–83. doi: 10.1016/S0301-0082(02)00011-4
  49. Salamone J.D. et al. Nucleus accumbens dopamine and rate of responding: Neurochemical and behavioral studies. Psychobiology, 1999. Vol. 27, no. 2, pp. 236–247. doi: 10.3758/BF03332117
  50. Ollman R. Fast guess in choice reaction time. Psychonomic Science, 1966. Vol. 6, no. 4, pp. 155–156. doi: 10.3758/BF03328004
  51. Palmatier M.A., Kang A.M., Kidd K.K. Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biological Psychiatry, 1999. Vol. 46, no. 4, pp. 557–567. doi: 10.1016/S0006-3223(99)00098-0
  52. Angelakis E. et al. Peak alpha frequency: an electroencephalographic measure of cognitive preparedness. Clinical Neurophysiology, 2004. Vol. 115, no. 4, pp. 887–897. doi: 10.1016/j.clinph.2003.11.034
  53. Petersen I., Eeg-Olofsson O. The development of the electroencephalogram in normal children from the age of 1 through 15 years – Non-paroxysmal activity. Neuropаdiatrie, 1971. Vol. 2, no. 3, pp. 375–404.
  54. Polikanova I.S., Sysoeva O.V., Tonevitsky A.G. Association between serotonin transporter (5HTT) and mental fatigue development [Elektronnyi resurs]. Psikhologicheskie Issledovaniya, 2012. Vol. 5, no. 24. Available at: http://psystudy.ru/index.php/eng/2012v5n24e/717-polikanova24e.html (Accessed 12.01.2017).
  55. Polikanova I.S., Sysoeva O.V., Tonevitsky A.G. Association between 5HTT polymorphism and cognitive fatigue development. International Journal of Psychophysiology (Special Issue), 2012. Vol. 3, no. 85, pp. 411–411. doi: 10.1016/j.ijpsycho.2012.07.128
  56. Ritchie T., Noble E.P. Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochemical Research, 2003. Vol. 28, no. 1, pp. 73–82. doi: 10.1023/A:1021648128758
  57. Salamone J.D. Involvement of nucleus accumbens dopamine in behavioral activation and effort-related functions: Dopamine handbook. Oxford; New York : Oxford University Press, 2010. 286 p.
  58. Salamone J.D. Motor function and motivation. In G.F Koob, M.L. Moal, R.F. Thompson (eds.). Encyclopedia of behavioral neuroscience. London: Academic Press, 2010. pp. 267–276.
  59. Liu J. Z. et al. Shifting of activation center in the brain during muscle fatigue: an explanation of minimal central fatigue? Neuroimage, 2007. Vol. 35, no. 1, pp. 299–307. doi: 10.1016/j.neuroimage.2006.09.050
  60. Stein D.J., Stahl S. Serotonin and anxiety: current models. International Clinical Psychopharmacology, 2000. Vol. 15, pp. 1–6.
  61. Tamminga C.A., Nemeroff C.B., Blakely R.D. Developing novel treatments for mood disorders: accelerating discovery. Biological Psychiatry, 2002. Vol. 52, no. 6, pp. 589–609. doi: 10.1016/S0006-3223(02)01470-1
  62. Fernandez T. et al. Test–retest reliability of EEG spectral parameters during cognitive tasks: I. Absolute and relative power. International Journal of Neuroscience, 1993. Vol. 68, no. 3–4, pp. 255–261. doi: 10.3109/00207459308994281
  63. Lorista M.M. et al. The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study. Brain Research, 2009. Vol. 1270, pp. 95–106. doi: 10.1016/j.brainres.2009.03.015
  64. Barnes J.M. et al. The Molecular Genetics of Executive Function: Role of Monoamine System Genes. Biological Psychiatry, 2011. Vol. 69, no. 12, pp. 127–143. doi: 10.1016/j.biopsych.2010.12.040
  65. Jap B.T. et al. Using EEG spectral components to assess algorithms for detecting fatigue. Expert Systems with Applications, 2009. Vol. 36, no. 2, pp. 2352–2359. doi: 10.1016/j.eswa.2007.12.043
  66. Weicker H., Strüder H.K. Influence of exercise on serotonergic neuromodulation in the brain. Amino Acids, 2001. Vol. 20, no. 1, pp. 35–47. doi: 10.1007/s007260170064
  67. Wickelgren W.A. Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 1977. Vol. 41, no. 1, pp. 67–85. doi: 10.1016/0001-6918(77)90012-9
  68. Wijesuriya N., Tran Y., Craig A. The psychophysiological determinants of fatigue. International Journal of Psychophysiology, 2007. Vol. 63, no. 1, pp. 77–86. doi: 10.1016/j.ijpsycho.2006.08.005
  69. Wood C.C., Jennings J.R. Speed-accuracy tradeoff functions in choice reaction time: Experimental designs and computational procedures. Perception & Psychophysics, 1976.  Vol. 19, no. 1, pp. 92–102. doi: 10.3758/BF03199392
  70. Yellott Jr., John I. Correction for fast guessing and the speed-accuracy tradeoff in choice reaction time. Journal of Mathematical Psychology, 1971. Vol. 8, no. 2, pp. 159–199. doi: 10.1016/0022-2496(71)90011-3

Information About the Authors

Irina S. Polikanova, PhD in Psychology, Head of the Laboratory of Convergent Research on Cognitive Processes, Federal Scientific Center for Psychological and Interdisciplinary Research, Lomonosov Moscow State University, Moscow, Russia, ORCID: https://orcid.org/0000-0002-5323-3487, e-mail: irinapolikanova@mail.ru

Sergey V. Leonov, PhD in Psychology, Senior Researcher, Laboratory of Psychology of Childhood and Digital Socialization, Federal Scientific Center for Psychological and Interdisciplinary Research, Moscow, Russia, ORCID: https://orcid.org/0000-0002-8883-9649, e-mail: svleonov@gmail.com

Metrics

Views

Total: 1887
Previous month: 17
Current month: 8

Downloads

Total: 919
Previous month: 3
Current month: 2