Cognitive impairments in schizophrenia in foreign studies: single function deficits or group of syndromes?

734

Abstract

Cognitive deficit is the one of the key groups of symptoms in schizophrenia. These disorders reflect pathological processes in the central nervous system and are an important predictor of the social functioning recovery of patients. The question of the deficit structure remains open. In some cases, cognitive impairments are detected in early school age, in others, they appear only in adolescence. At the disease onset, there is a sharp deterioration in cognitive functioning. Further change is also heterogeneous: the same cognitive functions can either remain stable, or deteriorate or improve. To further study the cognitive deficit, it is necessary to distinguish more homogeneous groups based on both clinical parameters, and on the results of performing cognitive tests. It is important for the future of the concept of cognitive deficit to correlate it with the usual conceptualizations, including pathopsychological symptom groups.

General Information

Keywords: cognitive deficit, schizophrenia, psychosis, neurocognition

Journal rubric: Medical Psychology

Article type: review article

DOI: https://doi.org/10.17759/jmfp.2021100201

For citation: Karyakina M.V., Rychkova O.V., Shmukler A.B. Cognitive impairments in schizophrenia in foreign studies: single function deficits or group of syndromes? [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2021. Vol. 10, no. 2, pp. 8–19. DOI: 10.17759/jmfp.2021100201. (In Russ., аbstr. in Engl.)

References

  1. Vygotsky L.S. Myshlenie i rech' [Thinking and speech]. Izd. 5, ispr. Moscow: Labirint, 1999. 352 p. (In Russ.).
  2. Lebedinsky V.V. Narusheniya psikhicheskogo razvitiya u detei [Violations of mental development in children]: Uchebnoe posobie. Moscow: Moskovskii universitet, 1985. 167 p. (In Russ.).
  3. Sukhareva G.E. Klinicheskie lektsii po psikhiatrii detskogo vozrasta [Clinical lectures on child psychiatry]. T. II, chast' 2. Moscow: Meditsina, 1959. 406 p. (In Russ.).
  4. Keefe R.S.E. et al. A longitudinal study of neurocognitive function in individuals at-risk for psychosis. Schizophrenia Research, 2006. Vol. 88, no. 1–3, pp. 26–35. DOI:10.1016/j.schres.2006.06.041
  5. Fioravanti M. et al. A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychology Review, 2005. Vol. 15, no. 2, pp. 73–95. DOI:10.1007/s11065-005-6254-9
  6. Seidman L.J. et al. Association of NeurocognitionWith Transition to Psychosis: Baseline Functioning in the Second Phase of the North American Prodrome Longitudinal Study. JAMA Psychiatry, 2016. Vol. 73, no. 12, pp. 1239–1248. DOI:10.1001/jamapsychiatry.2016.2479
  7. Aylward E., Walker E., Bettes B. Intelligence in schizophrenia: meta-analysis of the research. Schizophrenia Bulletin, 1984. Vol. 10, no. 3, pp. 430–459. DOI:10.1093/schbul/10.3.430
  8. Davidson M. et al. Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. American Journal of Psychiatry, 1999. Vol. 156, no. 9, pp. 1328–1335. DOI:10.1176/ajp.156.9.1328
  9. Geisler D. et al. Brain structure and function correlates of cognitive subtypes in schizophrenia. Psychiatry Research: Neuroimaging, 2015. Vol. 234, no. 1, pp. 74–83. DOI:10.1016/j.pscychresns.2015.08.008
  10. Castelnovo A., Ferrarelli F., D'Agostino A. Schizophrenia: from neurophysiological abnormalities to clinical symptoms. Frontiers in psychology, 2015. Vol. 6, 5 p. DOI:10.3389/fpsyg.2015.00478
  11. Thompson W.K. et al. Characterizing trajectories of cognitive functioning in older adults with schizophrenia: does method matter? Schizophrenia research, 2013. Vol. 143, no. 1, pp. 90–96. DOI:10.1016/j.schres.2012.10.033
  12. Jones P. et al. Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet, 1994. Vol. 344, no. 8934, pp. 1398–1402. DOI:10.1016/s0140-6736(94)90569-x
  13. Neumann C.S. et al. Childhood behavioral precursors of adult neuropsychological functioning in schizophrenia. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 1996. Vol. 9, no. 4, pp. 221–229.
  14. Schiffman J. et al. Childhood videotaped social and neuromotor precursors of schizophrenia: a prospective investigation. American Journal of Psychiatry, 2004. Vol. 161, pp. 2021–2027. DOI:10.1176/appi.ajp.161.11.2021
  15. de Paula A.L. et al. Cognition in at-risk mental states for psychosis. Neuroscience & Biobehavioral Reviews, 2015. Vol. 57, pp. 199–208. DOI:10.1016/j.neubiorev.2015.09.006
  16. Simon A.E. et al. Cognitive functioning in at-risk mental states for psychosis and 2-year clinical outcome. Schizophrenia research, 2012. Vol. 142, no. 1–3, pp. 108–115. DOI:10.1016/j.schres.2012.09.004
  17. McCleery A. et al. Cognitive functioning in first-episode schizophrenia: MATRICS Consensus Cognitive Battery (MCCB) Profile of Impairment. Schizophrenia research, 2014. Vol. 157, no. 1–3, pp. 33–39. DOI:10.1016/j.schres.2014.04.039
  18. Hou C.L. et al. Cognitive functioning in individuals at ultra-high risk for psychosis, first-degree relatives of patients with psychosis and patients with first-episode schizophrenia. Schizophrenia Research, 2016. Vol. 174, no. 1–3, pp. 71–76. DOI:10.1016/j.schres.2016.04.034
  19. Fusar-Poli P. et al. Cognitive functioning in prodromal psychosis. Archives of general psychiatry, 2012. Vol. 69, no. 6, pp. 562–571. DOI:10.1001/archgenpsychiatry.2011.1592
  20. Rodriguez M. et al. Cognitive Profiles and Functional Connectivity in First-Episode Schizophrenia Spectrum Disorders - Linking Behavioral and Neuronal Data. Frontiers in psychology, 2019. Vol. 10, 13 p. DOI:10.3389/fpsyg.2019.00689
  21. Koike S. et al. Cognitive profiles in childhood and adolescence differ between adult psychotic and affective symptoms: a prospective birth cohort study. Psychological medicine, 2018. Vol. 48, no. 1, pp. 11–22. DOI:10.1017/S0033291717000393
  22. Mollon J. et al. Course of Cognitive Development From Infancy to Early Adulthood in the Psychosis Spectrum. JAMA Psychiatry, 2018. Vol. 75, no. 3, pp. 270–279. DOI:10.1001/jamapsychiatry.2017.4327
  23. Parellada M. et al. Developmental Differences Between Schizophrenia and Bipolar Disorder. Schizophrenia Bulletin, 2017. Vol. 43, no. 6, pp. 1176–1189. DOI:10.1093/schbul/sbx126
  24. Dickinson D., Ramsey M.E., Gold J.M. Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 2007. Vol. 64, no. 5, pp. 532–542. DOI:10.1001/archpsyc.64.5.532
  25. Agnew-Blais J.C. et al. Early Childhood IQ Trajectories in Individuals Later Developing Schizophrenia and Affective Psychoses in the New England Family Studies. Schizophrenia Bulletin, 2015. Vol. 41, no. 4, pp. 817–23. DOI:10.1093/schbul/sbv027
  26. Isohanni M. et al. Early developmental milestones in adult schizophrenia and other psychoses. A 31-year follow-up of the Northern Finland 1966 Birth Cohort. Schizophrenia research, 2001. Vol. 52, no. 1–2, pp. 1–19. DOI:10.1016/s0920-9964(00)00179-1
  27. Fioravanti M., Bianchi V., Cinti M.E. Cognitive deficits in schizophrenia: an updated metanalysis of the scientific evidence. BMC Psychiatry, 2012. Vol. 12, 64 p. DOI:10.1186/1471-244X-12-64
  28. Carrión R.E. et al. From the psychosis prodrome to the first-episode of psychosis: No evidence of a cognitive decline. Journal of Psychiatric Research, 2018. Vol. 96, pp. 231–238. DOI:10.1016/j.jpsychires.2017.10.014
  29. Heinrichs R.W., Zakzanis K.K. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 1998. Vol. 12, no. 3, pp. 426–445. DOI:10.1037//0894-4105.12.3.426
  30. Hulshoff Pol H.E., Kahn R. What happens after first episode? Areview of progressive brain changes in chronically ill patients with schizophrenia. Schizophrenia bulletin, 2008. Vol. 34, no. 2, pp. 354–366. DOI:10.1093/schbul/sbm168
  31. Sánchez-Torres A.M. et al. Individual trajectories of cognitive performance in first episode psychosis: a 2-year follow-up study. European archives of psychiatry and clinical neuroscience, 2018. Vol. 268, no. 7, pp. 699–711. DOI:10.1007/s00406-017-0857-z
  32. David A.S. et al. IQ & risk for schizophrenia: a population-based cohort study. Psychological medicine, 1997. Vol. 27, pp. 1311–1323. DOI:10.1017/s0033291797005680
  33. Kremen W.S. et al. IQ decline during childhood and adult psychotic symptoms in a community sample: a 19-year longitudinal study. American Journal of Psychiatry, 1998. Vol. 155, no. 5, pp. 672–677. DOI:10.1176/ajp.155.5.672
  34. Jaaro-Peled H., Sawa A. Neurodevelopmental Factors in Schizophrenia. Psychiatric Clinics, 2020. Vol. 43, no. 2, pp. 263–274. DOI:10.1016/j.psc.2020.02.010
  35. Keefe R.S.E., Fenton WS. How should DSM-V criteria for schizophrenia include cognitive impairment? Schizophrenia Bulletin, 2007. Vol. 33, no. 4, pp. 912–920. DOI:10.1093/schbul/sbm046
  36. Lezak M.D. Neuropsychological Assessment. 5th edn. New York: Oxford University Press, 2012. 1016 p.
  37. Fuller R. et al. Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance. American Journal of psychiatry, 2002. Vol. 159, no. 7, pp. 1183–1189. DOI:10.1176/appi.ajp.159.7.1183
  38. Lam M. et al. Longitudinal cognitive changes in young individuals at ultrahigh risk for psychosis. JAMA Psychiatry, 2018. Vol. 75, no. 9, pp. 929–939. DOI:10.1001/jamapsychiatry.2018.1668
  39. Allott K. et al. Longitudinal Cognitive Performance in Individuals at Ultrahigh Risk for Psychosis: A 10-year Follow-up. Schizophrenia Bulletin, 2019. Vol. 45, no. 5, pp. 1101–1111. DOI:10.1093/schbul/sby143
  40. Fett A.J. et al. Long-term Changes in Cognitive Functioning in Individuals With Psychotic Disorders: Findings From the Suffolk County Mental Health Project. JAMA Psychiatry, 2019. Vol. 77, no. 4, pp. 387–396. DOI:10.1001/jamapsychiatry.2019.3993
  41. Islam M.A. et al. Long-term cognitive trajectories and heterogeneity in patients with schizophrenia and their unaffected siblings. Acta Psychiatrica Scandinavica, 2018. Vol. 138, no. 6, pp. 591–604. DOI:10.1111/acps.12961
  42. Thompson P.M. et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proceedings of the National Academy of Sciences, 2001. Vol. 98, no. 20, pp. 11650–11655. DOI:10.1073/pnas.201243998
  43. Fatouros-Bergman H. et al. Meta-analysis of cognitive performance in drug-naïve patients with schizophrenia. Schizophrenia research, 2014. Vol. 158, no. 1–3, pp. 156–162. DOI:10.1016/j.schres.2014.06.034
  44. Mollon J., Reichenberg A. Cognitive development prior to onset of psychosis. Psychological Medicine, 2018. Vol. 48, pp. 392–403. DOI:10.1017/s0033291717001970
  45. Murray R.M., Lewis S.W. Is schizophrenia a neurodevelopmental disorder? British medical journal (Clinical research ed.), 1987. Vol. 295, pp. 681–682. DOI:10.1136/bmj.295.6600.681
  46. Pantelis C.D. et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 2003. Vol. 361, no. 9354, pp. 281–288. DOI:10.1016/S0140-6736(03)12323-9
  47. Rund B.R. et al. Neurocognition and Duration of Psychosis: A 10-year Follow-up of First-Episode Patients. Schizophrenia Bulletin, 2016. Vol. 42, no. 1, pp. 87–95. DOI:10.1093/schbul/sbv083
  48. Juola P. et al. Neurocognition as a predictor of outcome in schizophrenia in the Northern Finland Birth Cohort 1966. Schizophrenia Research: Cognition, 2015. Vol. 2, no. 3, pp. 113–119. DOI:10.1016/j.scog.2015.07.001
  49. Mesholam-Gately R.I. et al. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology, 2009. Vol. 23, no. 3, pp. 315–336. DOI:10.1037/a0014708
  50. Liu C.C. et al. Neurocognitive functioning of subjects with putative pre-psychotic states and early psychosis. Schizophrenia Research, 2015. Vol. 164, no. 1–3, pp. 40–46. DOI:10.1016/j.schres.2015.03.006
  51. Gur R.C. et al. Neurocognitive growth charting in psychosis spectrum youths. JAMA Psychiatry, 2014. Vol. 71, no. 4, pp. 366–374. DOI:10.1001/jamapsychiatry.2013.4190
  52. Menkes M.W. et al. Neuropsychological functioning in early and chronic stages of schizophrenia and psychotic bipolar disorder. Schizophrenia research, 2019. Vol. 206, pp. 413–419. DOI:10.1016/j.schres.2018.10.009
  53. Seidman L.J. et al. Neuropsychology of the prodrome to psychosis in the NAPLS consortium: relationship to family history and conversion to psychosis. Archives of general psychiatry, 2010. Vol. 67, no. 6, pp. 578–588. DOI:10.1001/archgenpsychiatry.2010.66
  54. Øie M, Sundet K, Rund BR. Neurocognitive decline inearly-onset schizophrenia compared with ADHD and normal controls:Evidence from a 13-year follow-up study. Schizophrenia Bulletin, 2010. Vol. 36, no. 3, pp. 557–565. DOI:10.1093/schbul/sbn127
  55. Øie M, Sundet K. Neurocognition and functional outcome in early-onset schizophrenia and attention-deficit/hyperactivity disorder: a 13-year follow-up. Neuropsychology, 2011. Vol. 25, no. 1, pp. 25–35. DOI:10.1037/a0020855
  56. Øie M., Hugdahl K. A 10–13 year follow-up of changes inperception and executive attention in patients with early-onsetschizophrenia: A dichotic listening study. Schizophrenia Research, 2008. Vol. 106, no. 1, pp. 29–32. DOI:10.1016/j.schres.2007.11.036
  57. Bergh S. et al. Predictors and longitudinal course of cognitive functioning in schizophrenia spectrum disorders, 10 years after baseline: The OPUS study. Schizophrenia Research, 2016. Vol. 175, no. 1–3, pp. 57–63. DOI:10.1016/J.SCHRES.2016.03.025
  58. Rajji T.K., Ismail Z., Mulsant B.H. Age at onset and cognition in schizophrenia: Meta-analysis. The British Journal of Psychiatry, 2009. Vol. 95, no. 4, pp. 286–293. DOI:10.1192/bjp.bp.108.060723
  59. Honea R. et al. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. American Journal of Psychiatry, 2005. Vol. 162, no. 12, pp. 2233–2245. DOI:10.1176/appi.ajp.162.12.2233
  60. Silverstein M.L., Mavrolefteros G., Close D. Premorbid adjustment and neuropsychological performance in schizophrenia. Schizophrenia Bulletin, 2002. Vol. 28, no. 1, pp. 157–165. DOI:10.1093/oxfordjournals.schbul.a006918
  61. Goghari V.M. et al. Spatial working memory ability in individuals at ultra high risk for psychosis. Journal of Psychiatric Research, 2014. Vol. 50, pp. 100–105. DOI:10.1016/j.jpsychires.2013.12.010
  62. Osimo E.F. et al. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Molecular psychiatry, 2019. Vol. 24, no. 4, pp. 549–561. DOI:10.1038/s41380-018-0041-5
  63. Barder H.E. et al. Ten year neurocognitive trajectories in first-episode psychosis. Frontiers in human neuroscience, 2013. Vol. 7, 11 p. DOI:10.3389/fnhum.2013.00643
  64. Keefe R.S.E. et al. The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophrenia research, 2004. Vol. 68, no. 1–2, pp. 283–97. DOI:10.1016/j.schres.2003.09.011
  65. Anda L. et al. The Course of Neurocognitive Changes in Acute Psychosis: Relation to Symptomatic Improvement. PLoS One, 2016. Vol. 11, no. 12, article ID e0167390, 13 p. DOI:10.1371/journal.pone.0167390
  66. Harvey P.D. et al. The course of neuropsychological performance and functional capacity in older patients with schizophrenia: influences of previous history of long-term institutional stay. Biological psychiatry, 2010. Vol. 67, no. 10, pp. 933–939. DOI:10.1016/j.biopsych.2010.01.008
  67. Schaefer J. et al. The global cognitive impairment in schizophrenia: consistent over decades and around the world. Schizophrenia research, 2013. Vol. 150, no. 1, pp. 42–50. DOI:10.1016/j.schres.2013.07.009
  68. Nuechterlein K.H. et al. The MATRICS Consensus Cognitive Battery, part 1: testselection, reliability, and validity. American Journal of Psychiatry, 2008. Vol. 165, pp. 203–213. DOI:10.1176/appi.ajp.2007.07010042
  69. Antonova E. et al. The relationship between brain structure and neurocognition in schizophrenia: a selective review. Schizophrenia Research, 2014. Vol. 70, no. 2–3, pp. 117–145. DOI:10.1016/j.schres.2003.12.002
  70. Fett A.J. et al. The Relationship between Neurocognition and Social Cognition with Functional Outcomes in Schizophrenia: A Meta-Analysis. Neuroscience & Biobehavioral Reviews, 2011. Vol. 35, no. 3, pp. 573–588. DOI:10.1016/j.neubiorev.2010.07.001
  71. Torgalsbøen A.K., Mohn C., Rishovd Rund B. Neurocognitive predictors of remission of symptoms and social and role functioning in the early course of first-episode schizophrenia. Psychiatry research, 2014. Vol. 216, no. 1, pp. 1–5. DOI:10.1016/j.psychres.2014.01.031

Information About the Authors

Maria V. Karyakina, Research Associate, Moscow Research Institute of Psychiatry – the Branch of National Medical Research Center of Psychiatry and Narcology named after V.P. Serbsky, Moscow, Russia, ORCID: https://orcid.org/0000-0002-3313-1045, e-mail: karyakina.m@serbsky.ru

Olga V. Rychkova, Doctor of Psychology, Professor of the Department of clinical psychology and psychotherapy, Deputy Dean for Educational and Methodological Work, Moscow State University of Psychology & Education, Moscow, Russia, ORCID: https://orcid.org/0000-0002-2866-2810, e-mail: rychkovao@bk.ru

Alexander B. Shmukler, Doctor of Medicine, eputy Research Director, Moscow Research Institute of Psychiatry – the Branch of National Medical Research Center, Psychiatry and Narcology named after V.P. Serbsky, Moscow, Russia, ORCID: https://orcid.org/0000-0002-7187-9361, e-mail: shmukler.a@serbsky.ru

Metrics

Views

Total: 1289
Previous month: 49
Current month: 29

Downloads

Total: 734
Previous month: 20
Current month: 15