Well-being research and advanced natural language processing: prospects and limitations

 
Audio is AI-generated
 1 min read
52

Abstract

Context and relevance. Well-being research faces methodological limitations of conventional psychometric measures, criticized for poor ecological validity, limited information yield, and inadequate capture of multidimensional construct of well-being. Advanced natural language processing (NLP) technologies offer solutions to these constraints. Objective. To evaluate opportunities and challenges of transformer-based NLP for well-being research. Methods and materials. We conducted an analytical review of current literature examining NLP applications in well-being studies. Our analysis includes a technical overview of transformer-based NLP systems, focusing on: (1) textual data versus traditional scales, and (2) methodological implications. Results. The reviewed NLP approaches demonstrate three principal advantages: (1) enhanced granularity and information density in linguistic data, (2) superior ecological validity relative to standardized scales, and (3) improved resource efficiency. However, we identify significant limitations, particularly the inadequate methodological conceptualization of these tools, which fails to keep pace with their rapid technological evolution. Conclusions. While NLP methodologies show considerable promise for advancing well-being research, their effective implementation requires substantial methodological groundwork. Essential prerequisites include: (1) establishing robust validity and reliability assessment protocols, and (2) developing comprehensive epistemological frameworks for their application.

General Information

Keywords: well-being, psychological well-being, positive psychology, NLP, LLM, BERT, psychometrics

Journal rubric: General Psychology

Article type: review article

DOI: https://doi.org/10.17759/jmfp.2025140314

Funding. The reported study was funded by HSE University Basic Research Program in 2024.

Received 02.10.2024

Revised 01.10.2025

Accepted

Published

For citation: Voevodina, E.Y. (2025). Well-being research and advanced natural language processing: prospects and limitations. Journal of Modern Foreign Psychology, 14(3), 172–181. (In Russ.). https://doi.org/10.17759/jmfp.2025140314

© Voevodina E.Y., 2025

License: CC BY-NC 4.0

Full text

 

References

  1. Бусыгина, Н.П. (2010). «Дискурсивный поворот» в психологических исследованиях сознания. Консультативная психология и психотерапия, 18(1), 55—82. URL: https://psyjournals.ru/en/journals/cpp/archive/2010_n1/27707 (дата обращения: 04.08.2025).
    Busygina, N.P. (2010). The «Discursive turn» in the psychological studies of consciousness. Counseling Psychology and Psychotherapy, 18(1), 55—82. (In Russ.). URL: https://psyjournals.ru/en/journals/cpp/archive/2010_n1/27707 (viewed: 04.08.2025).
  2. Выготский, Л.С. (1982). Собрание сочинений: В 6 т.: Том 2. Проблемы общей психологии: Мышление и речь (с. 5—361). М.: Педагогика.
    Vygotsky, L.S. (1982). Collected Works: In 6 vols.: Vol. 2 Problems of General Psychology: Thinking and Speech (pp. 5—361). Moscow: Pedagogika. (In Russ.).
  3. Кузьмина, А.А., Лифшиц, М.А., Костенко, В.Ю. (2022). Методы компьютерной лингвистики и обработки естественного языка: Возможности и ограничения для задач психологии личности. Современная зарубежная психология, 11(1), 104—115. https://doi.org/10.17759/jmfp.2022110110
    Kuzmina, A.A., Lifshits, M.A., Kostenko, V.Y. (2022). Methods of computational linguistics and natural language processing: Opportunities and limitations for personality psychology tasks. Journal of Modern Foreign Psychology, 11(1), 104—115. (In Russ.). https://doi.org/10.17759/jmfp.2022110110
  4. Лебедева, А.А., Леонтьев, Д.А. (2022). Современные подходы к изучению качества жизни: От объективных контекстов к субъективным. Социальная психология и общество, 13(4), 142—162. https://doi.org/10.17759/sps.2022130409
    Lebedeva, A.A., Leontiev, D.A. (2022). Contemporary approaches to the quality of life: From objective contexts to subjective ones. Social Psychology and Society, 13(4), 142—162. (In Russ.). https://doi.org/10.17759/sps.2022130409
  5. Леонтьев Д.А. (2020). Счастье и субъективное благополучие: К конструированию понятийного поля. Мониторинг общественного мнения: Экономические и социальные перемены, 1(155), 14—37. https://doi.org/10.14515/monitoring.2020.1.02
    Leontiev, D.A. (2020). Happiness and well-being: Toward the construction of the conceptual field. Monitoring of Public Opinion: Economic and Social Changes, 1(155), 14—37. (In Russ.). https://doi.org/10.14515/monitoring.2020.1.02
  6. Abdurahman, S., Atari, M., Karimi-Malekabadi, F., Xue, M.J., Trager, J., Park, P.S., Golazizian, P., Omrani, A., Dehghani, M. (2024). Perils and opportunities in using large language models in psychological research. PNAS Nexus, 3(7), Article pgae245. https://doi.org/10.1093/pnasnexus/pgae245
  7. Alexandrova, A., Singh, R. (2022). When well-being becomes a number. In: C. Newfield, A. Alexandrova, S. John (Eds.), Limits of the Numerical: The Abuses and Uses of Quantification (pp. 181—200). London: University of Chicago Press. https://doi.org/10.7208/chicago/9780226817163.001.0001
  8. Bao, H.W.S. (2024). The Fill-Mask Association Test (FMAT): Measuring propositions in natural language. Journal of Personality and Social Psychology, 127(3), 537—561. https://doi.org/10.1037/pspa0000396
  9. Boyd, R.L., Markowitz, D.M. (2024). Verbal behavior and the future of social science. American Psychologist, 80(3), 411—433. https://doi.org/10.1037/amp0001319
  10. Debelak, R., Koch, T.K., Aßenmacher, M., Stachl, C. (2024). From embeddings to explainability: A tutorial on transformer-based text analysis for social and behavioral scientist. Preprint. https://doi.org/10.31234/osf.io/bc56a
  11. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1 (pp. 4171—4186). Minneapolis: Association for Computational Linguisticsh. ttps://doi.org/10.48550/arXiv.1810.04805
  12. Eichstaedt, J.C., Kern, M.L., Yaden, D.B., Schwartz, H.A., Giorgi, S., Park, G., Hagan, C.A., Tobolsky, V.A., Smith, L.K., Buffone, A., Iwry, J., Seligman, M.E.P., Ungar, L.H. (2021). Closed-and open-vocabulary approaches to text analysis: A review, quantitative comparison, and recommendations. Psychological Methods, 26(4), 398—427. https://doi.org/10.1037/met0000349
  13. Eytan, Y. (2024). A constructive critique of the dialectical aspect of positive psychology’s second wave. Journal of Theoretical and Philosophical Psychology, Preprint. https://doi.org/10.1037/teo0000276
  14. Fowers, B.J., Novak, L.F., Kiknadze, N.C., Calder, A.J. (2023). Questioning contemporary universalist approaches to human flourishing. Review of General Psychology, 27(2), 121—134. https://doi.org/10.1177/10892680221138230
  15. Hobbs, W.R., Ong, A.D. (2023). For living well, behaviors and circumstances matter just as much as psychological traits. Proceedings of the National Academy of Sciences, 120(12), Article e2212867120. https://doi.org/10.1073/pnas.2212867120
  16. Hou, H., Liu, I., Kong, F., Ni, S. (2024). Computational positive psychology: Advancing the science of wellbeing in the digital era. The Journal of Positive Psychology, 20(1), 1—14. https://doi.org/10.1080/17439760.2024.2362443
  17. Kennedy, B., Ashokkumar, A., Boyd, R.L., Dehghani, M. (2022). Text analysis for psychology: Methods, principles, and practices. In: M. Dehghani, R.L. Boyd (Eds.), Handbook of Language Analysis in Psychology (pp. 3—62). New York: The Guilford Press.
  18. Kjell, O., Giorgi, S., Schwartz, H.A. (2023). The text-package: An R-package for analyzing and visualizing human language using natural language processing and transformers. Psychological Methods, 28(6), 1478—1498. https://doi.org/10.1037/met0000542
  19. Kjell, O.N.E., Kjell, K., Schwartz, H.A. (2024). Beyond rating scales: With targeted evaluation, large language models are poised for psychological assessment. Psychiatry Research, 333, Article 115667. https://doi.org/10.1016/j.psychres.2023.115667
  20. Kjell, O.N.E., Sikström, S., Kjell, K., Schwartz, H.A. (2022). Natural language analyzed with Al-based transformers predict traditional subjective well-being measures approaching the theoretical upper limits in accuracy. Scientific Reports, 12, Article 3918. https://doi.org/10.1038/s41598-022-07520-w
  21. Laricheva, M., Liu, Y., Shi, E., Wu, A. (2024). Scoping review on natural language processing applications in counselling and psychotherapy. British Journal of Psychology, Preprint. https://doi.org/10.1111/bjop.12721
  22. Lian, R., Hsiao, V., Hwang, J., Ou, Y., Robbins, S.E., Connor, N.P., Macdonald, C.L., Sippel, R.S., Sethares, W.A., Schneider, D.F. (2023). Predicting health-related quality of life change using natural language processing in thyroid cancer. Intelligence-Based Medicine, 7, Article 100097. https://doi.org/10.1016/j.ibmed.2023.100097
  23. Lomas, T., Waters, L., Williams, P., Oades, L.G., Kern, M.L. (2021). Third wave positive psychology: Broadening towards complexity. The Journal of Positive Psychology, 16(5), 660—674. https://doi.org/10.1080/17439760.2020.1805501
  24. Michell, J. (2021). «The art of imposing measurement upon the mind»: Sir Francis Galton and the genesis of the psychometric paradigm. Theory & Psychology, 32(3), 375—400. https://doi.org/10.1177/09593543211017671
  25. Pennebaker, J.W. (2022). Computer based language analysis as a paradigm shift. In: M. Dehghani, R.L. Boyd (Eds.), Handbook of Language Analysis in Psychology (pp. 576—587). New York: The Guilford Press.
  26. Riezler, S., Hagmann, M. (2024). Validity, reliability, and significance: Empirical methods for NLP and data science. Cham: Springer Nature. https://doi.org/10.1007/978-3-031-57065-0
  27. Roser, M., Ortiz-Ospina, E. (2024). Literacy. Our World in Data. https://ourworldindata.org/literacy (viewed: 07.08.2025).
  28. Ryff, C.D., Boylan, J.M., Kirsch, J.A. (2021a). Advancing the science of well-being: A dissenting view on measurement recommendations. In: M.T. Lee, L.D. Kubzansky, T.J. VanderWeele (Eds.), Measuring Well-Being: Interdisciplinary Perspectives from the Social Sciences and the Humanities (pp. 521—535). New York: Oxford University Press. https://doi.org/10.1093/oso/9780197512531.003.0019
  29. Ryff, C.D., Boylan, J.M., Kirsch, J.A. (2021b). Response to response: Growing the field of well-being. In: M.T. Lee, L.D. Kubzansky, T.J. VanderWeele (Eds.), Measuring Well-Being: Interdisciplinary Perspectives from the Social Sciences and the Humanities (pp. 546—554). New York: Oxford University Press. https://doi.org/10.1093/oso/9780197512531.003.0021
  30. Sikström, S., Nicolai, M., Ahrendt, J., Nevanlinna, S., Stille, L. (2024a). Language or rating scales based classifications of emotions: Computational analysis of language and alexithymia. Npj Mental Health Research, 3, Article 37. https://doi.org/10.1038/s44184-024-00080-z
  31. Sikström, S., Pålsson Höök, A., Kjell, O. (2023). Precise language responses versus easy rating scales — Comparing respondents’ views with clinicians’ belief of the respondent’s views. Plos one, 18(2), Article e0267995. https://doi.org/10.1371/journal.pone.0267995
  32. Sikström, S., Valavičiūtė, I., Kuusela, I., Evors, N. (2024b). Question-based computational language approach outperforms rating scales in quantifying emotional states. Communications Psychology, 2(1), Article 45. https://doi.org/10.1038/s44271-024-00097-2
  33. Uher, J. (2021). Psychometrics is not measurement: Unraveling a fundamental misconception in quantitative psychology and the complex network of its underlying fallacies. Journal of Theoretical and Philosophical Psychology, 41(1), 58—84. https://doi.org/10.1037/teo0000176
  34. Uher, J. (2023). What’s wrong with rating scales? Psychology’s replication and confidence crisis cannot be solved without transparency in data generation. Social and Personality Psychology Compass, 17(5), Article e12740. https://doi.org/10.1111/spc3.12740
  35. VanderWeele, T.J., Trudel-Fitzgerald, C., Allin, P.V., Farrelly, C., Fletcher, G., Frederick, D. E., Hall, J., Helliwell, J.F., Kim, E.S., Lauinger, W.A., Lee, M.T., Lyubomirsky, S., Margolis, S., McNeely, E., Messer, N.G., Tay, L., Viswanath, K.V., Węziak-Białowolska, D., Kubzansky, L.D. (2021). Current recommendations on the selection of the measures for well-being. In: M.T. Lee, L.D. Kubzansky, T.J. VanderWeele (Eds.), Measuring well-being: Interdisciplinary perspectives from the social sciences and the humanities (pp. 501—520). New York: Oxford University Press. https://doi.org/10.1093/oso/9780197512531.003.0018
  36. VanderWeele, T.J., Trudel-Fitzgerald, C., Kubzansky, L.D. (2021). Response to «advancing the science of well-being: A dissenting view on measurement recommendations». In: M.T. Lee, L.D. Kubzansky, T.J. VanderWeele (Eds.), Measuring Well-Being: Interdisciplinary Perspectives from the Social Sciences and the Humanities (pp. 536—545). New York: Oxford University Press. https://doi.org/10.1093/oso/9780197512531.003.0020
  37. Varadarajan, V., Sikström, S., Kjell, O., Schwartz, H. (2024). ALBA: Adaptive Language-Based Assessments for Mental Health. In: Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 2466—2478). Mexico: Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.naacl-long.136
  38. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. (2017). Attention is all you need. In: NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 6000—6010). New York: Curran Associates Inc. https://doi.org/10.48550/arXiv.1706.03762
  39. Wissing, M.P. (2022). Beyond the «third wave of positive psychology»: Challenges and opportunities for future research. Frontiers in Psychology, 12, Article 795067. https://doi.org/10.3389/fpsyg.2021.795067

Information About the Authors

Elena Y. Voevodina, Doctoral Student, Junior Research Fellow, Lecturer, Faculty of Social Sciences, HSE University, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0002-3743-502X, e-mail: evoevodina@hse.ru

Contribution of the authors

Elena Yu. Voevodina — ideas; literature review, results and discussion, annotation, writing and design of the manuscript.

Conflict of interest

The author declare no conflict of interest.

Metrics

 Web Views

Whole time: 173
Previous month: 70
Current month: 12

 PDF Downloads

Whole time: 52
Previous month: 13
Current month: 4

 Total

Whole time: 225
Previous month: 83
Current month: 16