Non-verbal and semiotic features of the image of a politician in context to multimodal discourse

 
Audio is AI-generated
1

Abstract

This paper therefore aims to analyze the non-verbal and semiotic practices associated with images of political leaders created or reproduced by artificial intelligence, and the communicative effects that such images might have upon the perception of political power in contemporary multimodal discourse. It will concentrate on how the visual component, as a video, combines with the symbolism of animals stylized to represent a certain country and its political narrative. The research hypothesis is that AI-generated images of political figures influence the audience's perception by their non-verbal and semiotic components, enhancing the legitimacy of power. This is achieved through the association of leaders with archetypal symbols of strength and sacredness, creating a subconscious acceptance of their authority in the audience's minds. The expected outcome of this study will help to enrich the theory of non-verbal linguistics and the semiotics of power images in the digital era, together with investigating the possible relationship between visual political rhetoric and audience perception in terms of linguistic and cultural-pragmatic strategies.

General Information

Keywords: non-verbal semiotic units, politician image, zoosem, artificial intelligence, aesthetic impact, multimodal discourse

Journal rubric: Linguodidactics and Innovations.Psychological Basis of Learning Languages and Cultures.

Article type: scientific article

DOI: https://doi.org/10.17759/langt.2025120413

Received 01.11.2025

Revised 20.11.2025

Accepted

Published

For citation: Agadzhanyan, R.V., Yakovleva, E.V. (2025). Non-verbal and semiotic features of the image of a politician in context to multimodal discourse. Language and Text, 12(4), 150–163. (In Russ.). https://doi.org/10.17759/langt.2025120413

© Agadzhanyan R.V., Yakovleva E.V., 2025

License: CC BY-NC 4.0

References

  1. Байкова, А.В. (2022). Мультимодальный дискурс-анализ как один из методов коммуникативно-прагматического подхода к пониманию языка и текста. Вестник ШГПУ, 2 (54).
    Baikova, A.V. (2022). Multimodal discourse analysis as one of the methods of the communicative-pragmatic approach to understanding language and text. Vestnik ShGPU, 2 (54). (In Russ.).
  2. Журавлева, Е.В. (2020). Специфика невербальной составляющей в политической коммуникации (на примере российских телепередач). Политическая лингвистика, 6 (84), 33-41. https://doi.org/10.26170/pl20-06-04
    Zhuravleva, E.V. (2020). Specifics of the non-verbal component in political communication (based on the example of Russian TV programs). Political Linguistics, 6(84), 33-41. (In Russ.). https://doi.org/10.26170/pl20-06-04
  3. Крейдлин, Г.Е. (2004). Невербальная семиотика: язык тела и естественный язык. М.: Новое литературное обозрение.
    Kreydlin, G.E. (2004). Non-verbal semiotics: body language and natural language. Moscow: Novoye literaturnoye obozreniye. (In Russ.).
  4. Свирчевский, Д.А. (2022). Мультимодальный подход Г. Кресса и Т. ван Левена: чтение визуальных образов (реферат). МЕТОД: Московский ежеквартальник трудов из обществоведческих дисциплин, 12, 2 (2), 159-175.
    Svirchevsky, D.A. (2022). G. Kress and T. van Leeuwen's multimodal approach: reading visual images (abstract). METOD: Moscow quarterly journal of works in social sciences, 12, 2(2), 159-175. (In Russ.).
  5. Шейгал, Е.И. (2004). Семиотика политического дискурса. М.: Гнозис.
    Sheygal, E.I. (2004). Semiotics of political discourse. Moscow: Gnosis. (In Russ.).
  6. Berger, Julia (2019). Proposal and Background Research for Manipulated Visuals project (2019). (In Russ.). http://dx.doi.org/10.13140/RG.2.2.23096.52487
  7. Erişen, H. (2023). Multimodal discourse: An analysis of two political advertising visuals. iMGELEM. (In Russ.). https://doi.org/10.53791/IMGELEM.1287019.
  8. Stoyanov, Rossen K. (2023). The Political Image Making. Годишник На Департамент Медии и Комуникация 2023, С., НБУ, ISSN: 2815-3359.
  9. Kress, G., Leeuwen, T.V. (2020). Reading Images: The Grammar of Visual Design (3rd ed.). (In Russ.). https://doi.org/10.4324/9781003099857
  10. Lompe, M., Wicher, C. (2020). Materiality of visuality. About relationships and transformations of visuality and politics. Czasopismo Internetowe. 32. 10.14746/h.2020.4.2.
  11. Tønnessen, Morten, Tüür, Kadri. (2014). Introduction: The semiotics of animal representations. https://doi.org/10.1163/9789401210720_002
  12. Danesi, M. (2017, May 24). Visual Rhetoric and Semiotic. Oxford Research Encyclopedia of Communication.
  13. Yang, Kaiyuan (2024). The Impact of AI-Generated Characters on Audience Perception and Emotional Engagement in Film. Advances in Humanities Research. 10. 53-56. https://doi.org/54254/2753-7080/2024.18641.
  14. Klenk, М. (2024). Ethics of generative AI and manipulation: a design-oriented research agenda. Ethics and Information Technology. 26. https://doi.org/1007/s10676-024-09745-x.

Information About the Authors

Ruben V. Agadzhanyan, Candidate of Science (Philology), Associate Professor of the Department of Foreign Languages and Culture, Russian State Social University, Moscow, Russian Federation, ORCID: https://orcid.org/0009-0008-6888-8188, e-mail: ce3ar2006@yandex.ru

Elena V. Yakovleva, Doctor of Philology, Professor of the Department of English as a Second Foreign Language, Moscow State Linguistic University, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0003-1398-9260, e-mail: elexs@mail.ru

Contribution of the authors

Ruben V. Agadzhanyan — planning of the research, data collection and analysis, annotation, writing and design of the manuscript.

Elena V. Yakovleva — the ideas of the study, application of data analysis methods; obtaining the results of the study.

All authors participated in the discussion of the results and approved the final text of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Metrics

 Web Views

Whole time: 5
Previous month: 0
Current month: 5

 PDF Downloads

Whole time: 1
Previous month: 0
Current month: 1

 Total

Whole time: 6
Previous month: 0
Current month: 6