Application of Artificial Intelligence and Machine Learning Methods in Psychological Assessment and Analysis of Children's Drawings: Research Review

 
Audio is AI-generated
102

Abstract

The article is devoted to the application of artificial intelligence and machine learning methods in psychological diagnostics using drawing tests. The possibilities of modern digital technologies for automating the analysis of projective techniques, such as «Human Drawing», aimed at assessing the cognitive, emotional and social development, as well as the mental health of children and adolescents are considered. It is emphasized that the traditional interpretation of drawing tests requires high qualifications and is associated with the risk of subjectivity, while artificial intelligence and machine learning can increase the accuracy, reliability and scalability of the assessment process. The article analyzes foreign studies demonstrating the use of convolutional neural networks, large language models and multimodal approaches for processing drawings, including feature extraction, classification and forecasting of psychological states. Particular attention is paid to the validity and reliability of the tools, as well as the problem of systematic errors in machine learning models. A general description of artificial intelligence and machine learning methods as applied to image analysis and, in particular, children's drawings is provided. Examples of successful application of artificial intelligence for analysis of children's drawings in the context of assessment of post-traumatic stress, cognitive and motor skills are given. The study highlights the interdisciplinary nature of the approach, combining psychology and engineering sciences, and the prospects for further development of automated tools for psychological diagnostics.

General Information

Keywords: drawing test, projective technique, human drawing, psychodiagnostics, machine vision, artificial intelligence

Journal rubric: Developmental Psychology and Age-Related Psychology

Article type: review article

DOI: https://doi.org/10.17759/jmfp.2025140310

Funding. This publication was prepared as part of the research project of the MSUPE Development Program «Development and implementation of a hardware and software complex for diagnostics based on the «Human Drawing» test» as part of the implementation of the «Priority 2030» Program.

Received 29.06.2025

Revised 29.06.2025

Accepted

Published

For citation: Sorokova, M.G., Filippova, E.V., Bulygina, M.V., Alekseychuk, A.S. (2025). Application of Artificial Intelligence and Machine Learning Methods in Psychological Assessment and Analysis of Children's Drawings: Research Review. Journal of Modern Foreign Psychology, 14(3), 115–127. (In Russ.). https://doi.org/10.17759/jmfp.2025140310

© Sorokova M.G., Filippova E.V., Bulygina M.V., Alekseychuk A.S., 2025

License: CC BY-NC 4.0

References

  1. Абт, Л.Э. (2000). Теория проективной психологии. В: Л. Беллак, Л.Э. Абт, Г.У. Оллпорт (ред.), Проективная психология (с. 30—55). М.: Апрель-Пресс; Эксмо-Пресс.
    Abt, L. (2000). Theory of projective psychology. In: L. Bellak, L.E. Abt, G.W. Allport (Eds.), Projective Psychology (pp. 30—55). Moscow: Aprel-Press; Eksmo-Press. (In Russ.).
  2. Аванесян, Г. (2017). Теоретические предпосылки использования проективных методов в экспериментальных исследованиях. URL: https://www.researchgate.net/publication/356694586 (дата обращения: 04.09.2025).
    Avanesyan, G. (2017). Theoretical background for the use of projective methods in experimental research. URL: https://www.researchgate.net/publication/356694586 (viewed: 04.09.2025). (In Russ.).
  3. Акимова, М.К. (Ред.). (2025). Психодиагностика. Теория и практика: Учебник для вузов. М.: Юрайт.
    Akimova, M.K. (Ed.). (2025). Psychodiagnostics. Theory and Practice: Textbook for Universities. Moscow: Urait. (In Russ.).
  4. Бурлакова, Н.С. (2016). Проективные методы: Дискуссии о научном статусе, возможностях развития и применения в клинической психологии. В: Н.В. Зверева, И.Ф. Рощина, С.Н. Ениколопов (ред.), Диагностика в медицинской (клинической) психологии: Современное состояние и перспективы (с. 38—53). M.: OOO «Сам Полиграфист».
    Burlakova, N.S. (2016). Projective methods: discussions on scientific status, development possibilities and application in clinical psychology. In: N.V. Zvereva, I.F. Roshchina, S.N. Enikolopov (Eds.), Diagnostics in medical (clinical) psychology: current state and prospects (pp. 38—53). Moscow: Sam Polygraphist. (In Russ.).
  5. Залевская, Я.Г., Усатенко, О.Н. (2019). Способы применения психорисунка в практической деятельности психолога: Анализ проблемы и современная интерпретация. Мир науки. Педагогика и психология, 3(7). URL: https://mir-nauki.com/PDF/25PSMN319.pdf (дата обращения: 01.09.2025).
    Zalevskaya, Ya.G., Usatenko, O.N. (2019). Ways of applying psychological drawing in the practical activity of a psychologist: Analysis of the problem and modern interpretation. The World of Science. Pedagogy and Psychology, 3(7). (In Russ.). URL: https://mir-nauki.com/PDF/25PSMN319.pdf (viewed: 01.09.2025).
  6. Лебедева, Л.Д., Никонорова, Ю.В., Тараканова, Н.А. (2004). Энциклопедия признаков и интерпретаций в проективном рисовании и арт-терапии. СПб.: Речь.
    Lebedeva, L.D., Nikonorova, Yu.V., Tarakanova, N.A. (2004). Encyclopedia of signs and interpretations in projective drawing and art therapy. Saint-Petersburg: Rech. (In Russ.).
  7. Маховер, К. (2003). Проективный рисунок человека. М.: Смысл.
    Makhover, K. (2003). Projective drawing of a person. Moscow: Smysl. (In Russ.).
  8. Франк, Л. (2000). Проективные методы изучения личности. В: Л. Беллак, Л.Э. Абт, Г.У. Оллпорт (ред.), Проективная психология (c. 68—84). М.: Апрель-Пресс; Эксмо-Пресс.
    Frank, L. (2000). Projective methods of studying personality. In: L. Bellak, L.E. Abt, G.W. Allport (Eds.), Projective Psychology (pp. 68—84). Moscow: Aprel-Press, Eksmo-Press, (In Russ.). не нашла отсылку
  9. Anne, T., Philippsen, A., Nagai, Y. (2018). Characterizing individual behaviors by using recurrent neural networks. Université de Rennes. URL: https://perso.eleves.ens-rennes.fr/people/timothee.anne/pdf/report2018.pdf (viewed: 27.06.2025).
  10. Archana, R., Jeevaraj, P.S.E. (2024). Deep learning models for digital image processing: A review. Artificial Intelligence Review, 57, Article 11. https://doi.org/10.1007/s10462-023-10631-z
  11. Avanesyan, H. (2023). Psychological bases of projective drawing assessment. Yerevan: Edit Print.
  12. Babayan, A., Avanesyan, H., Hakobyan, Y., Hovhannisyan, H. (2024). Features of application of machine learning tools for psychological assessment of children's drawings. Modern Psychology Scientific Bulletin, 2(15), 22—37. https://doi.org/10.46991/SBMP/2024.7.2.022
  13. Baird, S., Panlilio, R., Seager, J., Smith, S., Wydick, B. (2022). Identifying psychological trauma among Syrian refugee children for early intervention: Analyzing digitized drawings using machine learning. Journal of Development Economics, 156, Article 102822. https://doi.org/10.1016/j.jdeveco.2022.102822
  14. Barboza, C.M., Wechsler, S.M. (2021). Evidências de validade dos indicadores emocionais no Desenho da Figura Humana. Avaliação Psicológica, 20(3), 321—330. http://dx.doi.org/10.15689/ap.2021.2003.19838.06
  15. Bayoudh, K., Knani, R., Hamdaoui, F., Mtibaa, A. (2022). A survey on deep multimodal learning for computer vision: Advances, trends, applications, and datasets. The Visual Computer, 38, 2939—2970. https://doi.org/10.1007/s00371-021-02166-7
  16. Beltzung, B., Pelé, M., Julien, P. Renoult, J.P., Sueur, C. (2023). Deep learning for studying drawing behavior: A review. Frontiers in Psychology, 14, Article 41. https://doi.org/10.3389/fpsyg.2023.992541
  17. Bleidorn, W., Hopwood, C.J. (2019). Using machine learning to advance personality assessment and theory. Personality and social psychology review, 23(2), 190—203. https://doi.org/10.1177/1088868318772990
  18. Chen, S., Stromer, D., Alabdalrahim, H.A., Schwab, S., Weih, M., Maier, A. (2020). Automatic dementia screening and scoring by applying deep learning on clock-drawing tests. Scientific Reports, 10, Article 20854. https://doi.org/10.1038/s41598-020-74710-9
  19. Cheng, X. (2024). Research on the sketch recognition and automatic plotting of deep learning. Applied and Computational Engineering, 33, 201—206. https://doi.org/10.54254/2755-2721/33/20230266
  20. Cummins, R., Zhang, M., Briscoe, E. (2016). Constrained multi-task learning for automated essay scoring. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 1 (pp. 789—799). Berlin: Association for Computational Linguistics. https://doi.org/10.18653/v1/p16-1075
  21. Fokkema, M., Iliescu, D., Greiff, S., Ziegler, M. (2022). Machine Learning and Prediction in Psychological Assessment: Some Promises and Pitfalls. European Journal of Psychological Assessment, 38(3), 165—175. https://doi.org/10.1027/1015-5759/a000714
  22. Foltz, P. (2014). Improving student writing through automated formative assessment: Practices and results. In: Proceedings of the 2014 International Association for Educational Assessment Annual Conference. Singapore: IAEA.
  23. Gado, S., Kempen, R. Lingelbach, K., Bipp, T. (2022). Artificial intelligence in psychology: How can we enable psychology students to accept and use artificial intelligence? Psychology Learning & Teaching, 21(1), 37—56. https://doi.org/10.1177/14757257211037149
  24. Gernhardt, A., Rübeling, H., Keller, H. (2013). «This is my family»: Differences in children’s family drawings across cultures. Journal of Cross-Cultural Psychology, 44(7), 1166—1183. https://doi.org/10.1177/0022022113478658
  25. Guo, H., Deane, P.D., van Rijn, P.W., Zhang, M., Bennett, R.E. (2018). Modeling basic writing processes from keystroke logs. Journal of Educational Measurement, 55(2), 194—216. https://doi.org/10.1111/jedm.12172
  26. Hao, J., Ho, T.K. (2019). Machine learning made easy: A review of Scikit-learn package in python programming language. Journal of Educational and Behavioral Statistics, 44(3), 348—361. https://doi.org/10.3102/1076998619832248
  27. Harris, D. B. (1963). Children´s drawings as measures of intellectual maturity. Harcourt, Brace & Brace.
  28. Hilliard, A., Kazim, E., Bitsakis, T., Leutner, F. (2022a). Measuring personality through images: Validating a forced-choice image-based assessment of the big five personality traits. Journal of Intelligence, 10(1), Article 12. https://doi.org/10.3390/jintelligence10010012
  29. Hilliard, A., Kazim, E., Bitsakis, T., Leutner, F. (2022b). Scoring a forced-choice image-based assessment of personality: A comparison of machine learning, regression, and summative approaches. Acta Psychologica, 228, Article 103659. https://doi.org/10.1016/j.actpsy.2022.103659
  30. Jensen, C.A, Sumanthiran, D., Kirkorian, H.L., Travers, B.G., Rosengren, K.S., Rogers, T.T. (2023). Human perception and machine vision reveal rich latent structure in human figure drawings. Frontiers in Psychology, 14, Article 1029808. https://doi.org/10.3389/fpsyg.2023.1029808
  31. Jiao, H., He, Q., Veldkamp, B. (2021). Process data in educational and psychological measurement. Frontiers in Psychology, 12, Article 793399. https://doi.org/10.3389/fpsyg.2021.793399
  32. Jiao, H., He, Q., Yao, L. (2023). Machine learning and deep learning in assessment. Psychological Testing and Assessment Modeling, 65(1), 179—190.
  33. Jurovatý, P., Demuthova, S. (2022). Kresba ľudskej postavy — interpretačné paradigmy. Ceskoslovenska psychologie, 66(1), 46—58. https://doi.org/10.51561/cspsych.66.1.46
  34. Khlaif, A.I., Naceur, M.S., Kherallahr, M. (2025). AI-driven classification of children’s drawings for pediatric psychological evaluation: An ensemble deep learning approach. Journal of Robotics and Control (JRC), 6(1), 124—141. https://doi.org/10.18196/jrc.v6i1.23302
  35. Koppitz, E. M. (1968). Psychological evaluation of children’s human figure drawings. New York: Grune & Stratton.
  36. Koubek, K. (2007). Test kresby lidské postavy. Praha: Testcentrum Hogrefe.
  37. Lange-Kuettner, C. (2020). Drawing. In: M. Harris, G. Westermann (Eds.), The Encyclopedia of Child and Adolescent Development: Cognition in Childhood, 3 (pp. 1277—1291). London: Wiley.
  38. Long, B., Fan, J.E., Chai, Z., Frank, M.C. (2019). Developmental changes in the ability to draw distinctive features of object categories. In: Proceedings 41st Annual Meeting of the Cognitive Science Society (pp. 699—705). N.Y.: Curran Associates, Inc.
  39. Long, B., Fan, J.E., Huey, H., Chai, Z., Frank, M.C. (2024). Parallel developmental changes in children’s production and recognition of line drawings of visual concepts. Nature Communications, 15, Article 1191. https://doi.org/10.1038/s41467-023-44529-9
  40. Machover, K. (1949). Personality projection in the drawing of the human figure: A method of personality investigation. Springfield: C. C. Thomas.
  41. Martinet, L., Sueur, C., Hirata, S., Hosselet, J., Matsuzawa, T., Pelé, M. (2021). New indices to characterize drawing behavior in humans (Homo sapiens) and chimpanzees (Pan troglodytes). Scientific reports, 11, Article 3860. https://doi.org/10.1038/s41598-021-83043-0
  42. Naglieri, J.A., Pfeiffer, S.I. (1992). Performance of disruptive behavior disordered and normal samples on the draw a person: Screening procedure for emotional disturbance. Psychological Assessment, 4(2), 156—159. https://doi.org/10.1037/1040-3590.4.2.156
  43. Park, J.S., Zou, C.Q., Shaw, A., Hill, B.M., Cai, C., Morris, M.R., Willer, R., Liang, P., Bernstein, M.S. (2024). Generative Agent Simulations of 1,000 People. https://doi.org/10.48550/arXiv.2411.10109
  44. Philippsen, A., Tsuji, S., Nagai, Y. (2022). Quantifying developmental and individual differences in spontaneous drawing completion among children. Frontiers in Psychology, 13, Article 783446. https://doi.org/10.3389/fpsyg.2022.783446
  45. Picard, D., Boulhais, M. (2011). Sex differences in expressive drawing. Personality and Individual Differences, 51(7), 850—855. https://doi.org/10.1016/j.paid.2011.07.017
  46. Piotrowski, C. (2015). Projective techniques us — age worldwide: A review of applied settings 1995—2015. Journal of Indian Academy of Applied Psychology, 41(3), 9—19.
  47. Rakhmanov, O., Dane, S. (2020). Effect of the age and gender on the reliability of draw-a-person test. Journal of Research in Medical and Dental Science, 8(5), 151—158.
  48. Rueda, F.J.M., Noronha, A.P.P., Santos, A.A.D., Jesuíno, A.D.S.A., Zuanazzi, A.C., Ferraz, A.S., Costa, A.R.L., Otoni, F. (2020). Drawing the human figure: Systems most used in cognitive assessment of children. Psico, 51(1), Article e31313. https://doi.org/10.15448/1980-8623.2020.1.31313
  49. Ruengchaijatuporn, N., Chatnuntawech, I., Teerapittayanon, S., Sriswasdi, S., Itthipuripat, S., Hemrungrojn, S., Bunyabukkana, P., Petchlorlian, A., Chunamchai, S., Chotibut, Th., Chunharas, Ch. (2022). An explainable self-attention deep neural network for detecting mild cognitive impairment using multi-input digital drawing tasks. Alzheimer’s Research & Therapy, 14, Article 111. https://doi.org/10.1186/s13195-022-01043-2
  50. Selvarajah, K., Richards, D. (2005). Using artificial intelligence to assist psychological testing. In: IASTED International Conference on Artificial Intelligence and Applications, part of the 23rd Multi-Conference on Applied Informatics, pp. 573-578. Innsbruck: IASTED.
  51. Shamrulismawi, F.N. (2021). Sketch Recognition based on Deep Learning for Children’s Psychological Development Monitoring. Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Information System. Universiti Teknologi Petronas. Seri Iskandar.
  52. Soliman, E.R.C. (2024). Adaptation of AI in the educative and academic community: Balancing innovation with responsible usage. Current Trends in Computer Sciences & Applications, 3(4), 427—428. https://doi.org/10.32474/CTCSA.2024.03.000166
  53. Tay, L., Woo, S.E., Hickman, L., Booth, B.M., D’Mello, S. (2022). A conceptual framework for investigating and mitigating machine-learning measurement bias (MLMB) in psychological assessment. Advances in Methods and Practices in Psychological Science, 5(1), 1—30. https://doi.org/10.1177/25152459211061337
  54. Trigka, M., Dritsas, E. (2025). A comprehensive survey of deep learning approaches in image processing. Sensors, 25(2), Article 531. https://doi.org/10.3390/s25020531
  55. Troncone, A., Chianese, A., Di Leva, A., Grasso, M., Cascella, C. (2021). Validity of the draw a person: A quantitative scoring system (DAP:QSS) for clinically evaluating intelligence. Child Psychiatry & Human Development, 52, 728—738. https://doi.org/10.1007/s10578-020-01058-6
  56. von Davier, A.A., Mislevy, R.J., Hao, J. (Eds.). (2021). Computational psychometrics: New methodologies for a new generation of digital learning and assessment: With examples in R and Python. Cham: Springer. https://doi.org/10.1007/978-3-030-74394-9
  57. Wang, Z., Rao, Y., Sun, S. Liu, X., Wei, Y., Yu, X., Liu, Z., Wang, Y., Liu, H., Zhou, J., Lu, J. (2025). Vision Generalist Model: A Survey. International Journal of Computer Vision. https://doi.org/10.1007/s11263-025-02502-7
  58. Widiyanto, S., Abuhasan, J.W. (2020). Implementation the convolutional neural network method for classification the draw-a-person test. In: 2020 Fifth International Conference on Informatics and Computing (ICIC). Gorontalo: IEEE. https://doi.org/10.1109/ICIC50835.2020.9288651
  59. Willcock, E., Imuta, K., Hayne, H. (2011). Children’s human figure drawings do not measure intellectual ability. Journal of Experimental Child Psychology, 10(3), 444—452. https://doi.org/10.1016/j.jecp.2011.04.013
  60. Xu, P., Hospedales, T.M., Yin, Q., Song, Y.Z., Xiang, T., Wang, L. (2022). Deep learning for free-hand sketch: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (pp. 285—312. https://doi.org/10.1109/TPAMI.2022.3148853
  61. Yarkoni, T., Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on psychological science, 12(6), 1100—1122. https://doi.org/10.1177/1745691617693393
  62. Yuan, Y., Huang, J., Ma, X. Yan, K. (2020). Children's drawing psychological analysis using shallow convolutional neural network. In: 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics) (pp. 692—698). https://doi.org /10.1109/iThings/GreenCom/CPS50389.2020
  63. Zhao, J., Wu, M., Zhou, L., Wang, X., Jia, J. (2022). Cognitive psychology-based artificial intelligence review. Frontiers in Neuroscience, 16, Article 1024316. https://doi.org/10.3389/fnins.2022.1024316

Information About the Authors

Marina G. Sorokova, Doctor of Education, Candidate of Science (Physics and Matematics), Associate Professor, Head of the Department of Digital Education, Head of Scientific and Practical Center for Comprehensive Support of Psychological Research "PsyDATA", Moscow State University of Psychology and Education, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0002-1000-6487, e-mail: sorokovamg@mgppu.ru

Elena V. Filippova, Candidate of Science (Psychology), Professor, the head of the Child and family psychotherapy chair, Psychologicalcounseling faculty, Senior researcher, scientific secretary of the Moscow State University of Psychology and Education, employee of the Psychological Consultation of the Moscow State University of Psychology and Education, member of the editorial board of the journal “Counseling Psychology and Psychotherapy”, member of the editorial board of the journal “Psychological Science and Education”., Moscow State University of Psychology and Education, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0002-1328-3041, e-mail: e.v.filippova@mail.ru

Maria V. Bulygina, Candidate of Science (Psychology), associate professor at the chair of child and family psychotherapy department of psychological counseling, Moscow State University of Psychology & Education, Head of the Psychological and Pedagogical Laboratory of the State Educational Institution Education Center No. 1840, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0003-4459-0914, e-mail: buluginamv@mgppu.ru

Andrey S. Alekseychuk, Candidate of Science (Physics and Matematics), Associate Professor, Department of Mathematical Cybernetics, Moscow Aviation Institute (National Research University) (MAI), Associate Professor of the Department of Digital Education, Moscow State University of Psychology and education, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0003-4167-8347, e-mail: alexejchuk@gmail.com

Contribution of the authors

Marina G. Sorokova — research management, conducting the research, writing — original draft.
Elena V. Filippova — conducting the research, writing — original draft.
Maria V. Bulygina — conducting the research, writing — original draft.
Andrey S. Alekseychuk. — conducting the research, writing — review & editing.
All authors participated in the discussion of the results and approved the final text of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Metrics

 Web Views

Whole time: 361
Previous month: 150
Current month: 23

 PDF Downloads

Whole time: 102
Previous month: 45
Current month: 5

 Total

Whole time: 463
Previous month: 195
Current month: 28