Sufficient Conditions for the Existence of a Н∝-infinity State Observer for Linear Continuous Dynamical Systems

56

Abstract

The article deals with the problem of finding the observer of the state vector of linear continuous non-stationary dynamical systems with uncertainty of the initial conditions, limited external influences and measurement errors over a finite time interval. Sufficient conditions for the existence of an observer are formulated and proved on the basis of the expansion principle. Relationships are obtained for finding the parameters of the observer and the worst laws of change in external influences and measurement errors. As a limiting case, the problem of observer synthesis for stationary linear dynamical systems on a semi-infinite time interval is considered. Two applied problems of estimating the aircraft state vector based on the results of incomplete and inaccurate measurements are solved.

General Information

Keywords: robust estimation, state observer, sufficient conditions, expansion principle, game approach

Journal rubric: Data Analysis

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2023130202

Received: 12.04.2023

Accepted:

For citation: Panteleev A.V., Yakovleva A.A. Sufficient Conditions for the Existence of a Н∝-infinity State Observer for Linear Continuous Dynamical Systems. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2023. Vol. 13, no. 2, pp. 36–63. DOI: 10.17759/mda.2023130202. (In Russ., аbstr. in Engl.)

References

  1. Koobloch H. W., Isidori A.. Flockerzi D. Topics in control theory. Basel; Springer (DMV‑Seminar; Bd. 22), 1993.
  2. Doyle J., Francis B., Tannenbaum A. Feedback Control Theory. Macmillan Publishing Co, 1990.
  3. Skogestad S., Postlethwaite I. Multivariable Feedback Control: Analysis and Design. John Wiley and sons, 2005.
  4. Polyak B.T., Shcherbakov P.S. Robastnaya ustoychivost' i upravleniye [Robust stability and control]. Nauka, Moscow, 2002. (In Russ.).
  5. Green M., Limebeer D.J.N. Linear Robust Control. Dover Publications, 2012.
  6. Simon D. Optimal State Estimation. Kalman, , and Nonlinear Approaches. John Wiley andsons, 2006.
  7. Kurdyukov A. P., Andrianova O. G., Belov A. A., Gol'din D. A. In between the LQG/H2- and H∞-control theories. Autom. Remote Control, 82:4 (2021), p. 565–618. (In Russ.).
  8. Balandin D.V., Kogan M.M. Sintez zakonov upravleniya na osnove lineynykh matrichnykh neravenstv [Synthesis of control laws based on linear matrix inequalities]. Fizmatlit, Moscow, 2007. (In Russ.).
  9. Polyak B.T., Khlebnikov M.V., Shcherbakov P.S. Upravleniye lineynymi sistemami pri vneshnikh vozmushcheniyakh: Tekhnika lineynykh matrichnykh neravenstv [Control of linear systems under external disturbances: Technique of linear matrix inequalities]. URSS/LENAND, Moscow, 2014. (In Russ.).
  10. Khlebnikov M. V., Polyak B. T., Kuntsevich V. M. Optimization of linear systems subject to bounded exogenous disturbances: The invariant ellipsoid technique. Autom. Remote Control, 72:11 (2011), p. 2227–2275. (In Russ.).
  11. Polyak B.T., Khlebnikov M.V., Rapoport L.B. Matematicheskaya teoriya avtomaticheskogo upravleniya [Mathematical theory of automatic control]. URSS/LENAND, Moscow, 2019. (In Russ.).
  12. Gadewadikar J., Lewis F.L., Abu-Khalaf M. Necessary and Sufficient Conditions for H-infinity Static Output-Feedback Control. Journal of Guidance, Control, and Dynamics. Vol.29, No. 4, 2006. p. 915-920.
  13. Chang J.-L., Wu T.-C. Dynamic Compensator-Based Output Feedback Controller Design for Uncertain Systems with Adjustable Robustness. Journal of Control Science and Engineering. V. 2018, Article ID 5806787.
  14. Balandin D.V., Kogan M.M. Design of Optimal Control Under Uncertain Initial Conditions: A Minimax Approach. Autom. Remote Control. 2009. V. 70. No. 11. P. 1767—1775. (In Russ.).
  15. Balandin D. V., Kogan M. M. Minimax filtering: -optimal observers and generalized H∞-optimal filters. Autom. Remote Control, 74:4 (2013), p. 575–587. (In Russ.).
  16. Balandin D. V., Kogan M. M. Control and estimation in linear time-varying systems based on ellipsoidal reachability sets. Autom. Remote Control, 81:8 (2020), p. 1367–1384. (In Russ.).
  17. Basar T., Bernhard P. H∞-Optimal Control and Related Minimax Design Problems: a Dynamic Game Approach. Birkhauser, Boston, 1995.
  18. Shaked U.,Theodor Y. -optimal estimation: a tutorial. Proc. 31st IEEE Conf. Decision Contr., New York, NY, USA, 1992, pp. 2278–2286 , vol.2.
  19. Banavar R. N., Speyer J. L. A linear-quadratic game approach to estimation and smoothing. Proceedings of the American Control Conference, Evanston, IL, USA, 1991, pp. 2818–2822.
  20. Yaesh I., Shaked U. Game theory approach to optimal linear state estimation and its relation to the minimum H1-norm estimation. IEEE Trans. Automat. Contr., vol. 37, no. 6, pp. 828–831, 1992.
  21. Wu A., Dong H., Duan G. Improved robust H-infinity estimation for uncertain continuous-time systems. J. Syst. Sci. Complex., vol. 20, no. 3, pp. 362–369, 2007.
  22. Li H., Fu M. A linear matrix inequality approach to robust H1 filtering. IEEE Trans. Signal Processing, vol. 45, no. 9, pp. 2338–2350, 1997.
  23. Li J., Li S. E., Tang K., Lv Y., Cao W. Reinforcement solver for H-infinity filter with bounded noise // 2020 15th IEEE International Conference on Signal Processing (ICSP), vol. 1, pp. 62-67, 2020.
  24. Shue S., Agarwal R.K. Design of automatic landing systems using mixed control. J. of Guidance, Control and Dynamics, 22 pp 103-114, 1999.
  25. Lungu R., Lungu M. Control of the aircraft lateral-directional motion during landing using the control and the dynamic inversion. Proc. Of the Romanian Academy Ser. A, V. 16, №64 2015, p. 547-555.
  26. Krotov V.F., Gurman V.I. Metody i zadachi optimal'nogo upravleniya [Methods and problems of optimal control]. Nauka, Moscow, 1973. (In Russ.).
  27. Gurman V.I. Printsip rasshireniya v zadachakh upravleniya [The principle of extension in control problems]. Nauka, Moscow, 1985. (In Russ.).
  28. Patsyukov V.P. Differentsial'nyye igry pri razlichnoy informirovannosti igrokov [Differential games with different awareness of the players]. Sovetskoye radio, Moscow, 1976. (In Russ.).
  29. Bortakovskiy A.S., Panteleev A.V. Lineynaya algebra v primerakh i zadachakh [Linear Algebra in Examples and Tasks]. Vysshaya shkola, Moscow, 2010. (In Russ.).
  30. Graupe D. Identification of Systems. Kreiger Publishing Comp., Huntington, NY, 1976.

Information About the Authors

Andrey V. Panteleev, Doctor of Physics and Matematics, Professor, Head of the Department of Mathematical Cybernetics, Institute of Information Technologies and Applied Mathematics, Moscow Aviation Institute (National Research University), Moscow, Russia, ORCID: https://orcid.org/0000-0003-2493-3617, e-mail: avpanteleev@inbox.ru

Aleksandra A. Yakovleva, Master Student, Moscow Aviation Institute, Moscow, Russia, e-mail: ayakovleva982@gmail.com

Metrics

Views

Total: 84
Previous month: 7
Current month: 5

Downloads

Total: 56
Previous month: 8
Current month: 4