Modelling and Data Analysis
2025. Vol. 15, no. 3, 76–93
doi:10.17759/mda.2025150305
ISSN: 2219-3758 / 2311-9454 (online)
Comparative analysis of the effectiveness of using metaheuristic modeling methods to solve the traveling salesman problem
Abstract
Context and relevance.The traveling salesman problem (TSP) is one of the key NP-hard combinatorial optimization problems with wide applications in logistics, transportation planning, and other fields. Exact methods for solving TSP become inefficient as the problem dimension increases, making the use of metaheuristic methods such as simulated annealing (SA), ant colony optimization (ACO), and particle swarm optimization (PSO) relevant. Objective. To conduct a comparative analysis of the effectiveness of SA, ACO and PSO for solving the traveling salesman problem with 100 points, to evaluate their convergence and to identify the optimal parameters. Hypothesis. The ant algorithm, due to the pheromone trail mechanism, will provide higher accuracy of solutions compared to SA and PSO, but will require more computational resources. Methods and materials. The study conducted computational experiments with varying parameters of each algorithm. For SA, the initial temperature and cooling coefficient were analyzed, for ACO, the influence of pheromones and distances, for PSO, the cognitive and social coefficients. Results. ACO showed the best results, finding a route with a length of 9.23, demonstrating high efficiency for medium-sized problems. PSO took an intermediate position with a route length of 32.64, making it suitable for moderately complex problems. SA was the least effective, with a route length of 45.2, which limits its use for complex routing networks. Conclusions. The ant algorithm demonstrated the greatest efficiency due to the balance between exploring the solution space and exploiting the found routes, which is especially important for maritime Arctic logistics, where sustainable route optimization is required under high uncertainty. PSO showed good convergence, but it is inferior to ACO in terms of accuracy. SA, despite its simplicity, is less effective for high-dimensional problems. The obtained results are of particular practical value for route optimization in the Arctic region, where traditional methods often prove to be ineffective.
General Information
Keywords: multi-agent modeling, simulated annealing method, ant colony algorithm, particle swarm algorithm, traveling salesman problem, NP-hard problem
Journal rubric: Optimization Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2025150305
Funding. The work was performed within the framework of the state assignment of the Laboratory of problems of territorial development on the research topic "Theoretical and methodological foundations of integrated resource management of territorial development in modern conditions (using the example of the western part of the Arctic zone of the Russian Federation)".
Received 24.07.2025
Revised 29.07.2025
Accepted
Published
For citation: Koshunyaeva, N.V., Tutygin, A.G. (2025). Comparative analysis of the effectiveness of using metaheuristic modeling methods to solve the traveling salesman problem. Modelling and Data Analysis, 15(3), 76–93. (In Russ.). https://doi.org/10.17759/mda.2025150305
© Koshunyaeva N.V., Tutygin A.G., 2025
License: CC BY-NC 4.0
References
- Иванов П.С., Смирнова Л.К. (2021). Применение муравьиных алгоритмов для решения задачи коммивояжёра. Искусственный интеллект и принятие решений, 3, 45-58.
Ivanov P.S., Smirnova L.K. (2021). Application of Ant Algorithms for Solving the Traveling Salesman Problem. Artificial Intelligence andDecision Making, 3, 45-58. (In Russ.). - Иванов С.М. (2021). Транспортные системы Арктики: вызовы и решения. СПб.: Изд-во Политехн. ун-та, 200 с.
Ivanov S.M. (2021). Transport Systems of the Arctic: Challenges and Solutions. St. Petersburg: Polytechnic University Press, 200 p. (In Russ.). - Кошуняева Н.В., Тутыгин А.Г. (2025).Нечеткий муравьиный алгоритм для оптимизации маршрутов судов в Белом море. Вестник Воронежского государственного технического университета, 21(2), 26-33. DOI: 10.36622/1729-6501.2025.21.2.004. (На рус.). URL: https://doi.org/10.36622/1729-6501.2025.21.2.004 (дата обращения: 10.07.2025).
Koshunyaeva N.V., Tutygin A.G. (2025). Fuzzy Ant Algorithm for Ship Route Optimization in the White Sea. Bulletin of Voronezh State Technical University, 21(2), 26-33. (In Russ.). URL: https://doi.org/10.36622/1729-6501.2025.21.2.004 (viewed: 10.07.2025). - Попов Д.И., Соколов А.Ю. (2019). Алгоритмы роевого интеллекта: метод роя частиц и его модификации. Искусственный интеллект и принятие решений, 3, 45–62.
Popov D.I., Sokolov A.Yu. (2019). Swarm Intelligence Algorithms: Particle Swarm Method and Its Modifications. Artificial Intelligence and Decision Making, 3, 45–62. (In Russ.). - Тутыгин А.Г., Антипов Е.О., Коробов В.Б. (2020). Проблемы моделирования логистических операций в Арктической зоне Российской Федерации. Архангельск: КИРА, 244 с.
Tutygin A.G., Antipov E.O., Korobov V.B. (2020). Modeling of Logistics Operations in the Arctic Zone of the Russian Federation. Arkhangelsk: KIRA, 244 p. (In Russ.). - Штовба С.Д. (2003). Муравьиные алгоритмы. Exponenta Pro. Математика в приложениях, 4, 70-75. URL: https://www.researchgate.net/publication/279535061 (дата обращения: 23.10.2024).
Stovba S.D. (2003). Ant Algorithms. Exponenta Pro. Mathematics in Applications, 4, 70-75. (In Russ.). URL: https://www.researchgate.net/publication/279535061 (viewed: 23.10.2024). - Applegate D.L., Bixby R.E., Chvatal V., Cook W.J. (2006). The Traveling Salesman Problem: A Computational Study. Princeton: Princeton University Press, 606 p. ISBN: 978-0-691-12993-8
- Blum C., Roli A. (2003). Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys, 35(3), 268-308. https://doi.org/10.1145/937503.937505
- Bonabeau E., Dorigo M., Theraulaz G. (1999). Swarm Intelligence: From Natural to Artificial Systems. Oxford: Oxford University Press, 307 p. ISBN: 978-0-19-513158-1
- Colorni A., Dorigo M., Maniezzo V. (1991). Distributed Optimization by Ant Colonies. Proceedings of ECAL’91, 134–142. Paris: Elsevier.
- Dominguez R., Cannella S. (2020). Insights on Multi-Agent Systems Applications for Supply Chain Management. Journal of Sustainability, 12(5), 1–15. https://doi.org/10.3390/su12051842
- Dorigo, M., et al. (2021). Ant Colony Optimization: A 30-Year Retrospective.
Swarm Intelligence, 15(1-2), 1–42. https://doi.org/1007/s11721-021-00202-8 - Johnson D.S. et al. (1989). Optimization by Simulated Annealing: An Experimental Evaluation. Operations Research, 37(6), 865–892. https://doi.org/10.1287/opre.37.6.865
- Hussien, A.G. et al. (2022). Recent Advances in Harris Hawks Optimization. Neural Computing and Applications, 34, 8939–8980. https://doi.org/10.1007/s00521-022-07173-w
- Karp R.M. (1972). Reducibility Among Combinatorial Problems. In: Complexity of Computer Computations. New York: Plenum Press, 85-103. https://doi.org/10.1007/978-1-4684-2001-2_9
- Kennedy J., Eberhart R. (1995). Particle Swarm Optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, 4, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968
- Kirkpatrick S., Gelatt C.D., Vecchi M.P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
- Stützle T., Hoos H.H. (2000). MAX-MIN Ant System. Future Generation Computer Systems, 16(8), 889-914. https://doi.org/10.1016/S0167-739X(00)00043-1
- Talbi, E.-G. (2021). Metaheuristics: From Design to Implementation.
ACM Computing Surveys, 54(6), 1-42. https://doi.org/10.1145/3460772 - Tsotskas, C., Kipouros, T. (2022). Simulated Annealing in Aerospace Engineering: A 2020s Perspective. AIAA Journal, 60(4), 1-18. https://doi.org/10.2514/1.J061824
- Zhang Y. et al. (2020). Improved Simulated Annealing for Large-scale TSP. Applied Soft Computing, 86, 105890. https://doi.org/10.1016/j.asoc.2019.105890
Information About the Authors
Contribution of the authors
All authors participated in the discussion of the results and approved the final text of the manuscript.
Conflict of interest
The authors declare no conflict of interest.
Ethics statement
This study does not require ethical approval as it is based solely on computational experiments with algorithms and does not involve human participants or personal data. Therefore, the informed consent procedure was not applicable
Metrics
Web Views
Whole time: 87
Previous month: 37
Current month: 9
PDF Downloads
Whole time: 19
Previous month: 5
Current month: 0
Total
Whole time: 106
Previous month: 42
Current month: 9