Modelling and Data Analysis
2025. Vol. 15, no. 3, 131–147
doi:10.17759/mda.2025150308
ISSN: 2219-3758 / 2311-9454 (online)
Mathematical model of polarization switching based on the generalised Landau–Khalatnikov–Tani equation: numerical implementation
Abstract
The paper presents a review of existing mathematical models describing the dynamics of polarization changes in ferroelectrics based on Landau's thermodynamic theory. Particular attention is given to the generalised Landau–Khalatnikov–Tani model, which accounts for inertial effects and enables the description of hysteresis phenomena. The model is formulated as an initial-boundary value problem for a hyperbolic-type partial differential equation. An implicit finite-difference scheme is constructed for the numerical solution of the problem. Results of computational experiments are presented, demonstrating polarization switching and the formation of dielectric hysteresis in ferroelectric materials undergoing first-order phase transitions.
General Information
Keywords: Landau – Khalatnikov – Tani equation, implicit finite-difference scheme, ferroelectric, polarization hysteresis, computational experiment
Journal rubric: Numerical Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2025150308
Received 03.08.2025
Revised 13.08.2025
Accepted
Published
For citation: Moroz, L.I., Doroshkov, O.S. (2025). Mathematical model of polarization switching based on the generalised Landau–Khalatnikov–Tani equation: numerical implementation. Modelling and Data Analysis, 15(3), 131–147. (In Russ.). https://doi.org/10.17759/mda.2025150308
© Moroz L.I., Doroshkov O.S., 2025
License: CC BY-NC 4.0
References
- Рабе, К.М. (Ред.). (2015). Физика сегнетоэлектриков: современный взгляд. Москва: Лаборатория знаний, 443 с.
Rabe, K.M. (Ed.). (2015). Physics of Ferroelectrics: A Modern Perspective. Moscow: Laboratory of Knowledge, 443 p. (In Russ.) - Мороз, Л.И., Масловская, А.Г. (2018). Метод прогноза и коррекции в задаче численного моделирования фрактальной динамики доменных границ сегнетоэлектриков. Вестник Амурского государственного университета. Серия: Естественные и экономические науки, (83), 3–8.
Moroz, L.I., Maslovskaya, A.G. (2018). Method of prediction and correction in the problem of numerical modeling of fractal dynamics of ferroelectric domain boundaries. Vestnik Amurskogo gosudarstvennogo universiteta. Seriya: Estestvennye i ekonomicheskie nauki , (83), 3–8. (In Russ.) - Ducharne, B., Newell, B., Sebald, G. (2020). Unique fractional derivative operator to simulate all dynamic piezoceramic dielectric manifestations: from aging to frequency-dependent hysteresis. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(1), 197–206. https://doi.org/10.1109/TUFFC.2019.2938891
- Li, Z., Zhang, Y., Wen, H., Dong, C. (2024). Strain and ferroelectric polarization influence on perpendicular magnetic anisotropy of CoFe₃N/BaTiO₃ Results in Physics 57, 107388. https://doi.org/10.1016/j.rinp.2024.107388
- Scott, J.F. (2000). Ferroelectric Memories. Heidelberg: Springer Science & Business Media, 248
- Wang, B., Xia, R., Fan, H., Woo, C.H. (2003). Dynamic process of domain switching in ferroelectric films. Appl. Phys., 94, 3384. https://doi.org/10.1063/1.1599958
- Mazur, O.Y., Stefanovich, L.I., Yurchenko, V.M. (2016). Effect of a weak external electric field on the kinetics of the ordering of ferroelectrics upon first-order phase transitions. Solid State 58, 1596–1604. https://doi.org/10.1134/S1063783416080205
- Zhang, R., Lin, C., Dong, H. et al. (2025). Compositionally-graded ferroelectric thin films by solution epitaxy produce excellent dielectric stability. Nature Communications, 16(98), 1–10. https://doi.org/10.1038/s41467-024-55411-7
- Landau, L.D., Ginzburg, V.L. (1965). On the theory of superconductivity. Collected Papers of L.D. Landau, 546–568. https://doi.org/10.1016/B978-0-08-010586-4.50078-X
- Akshayveer, A., Buroni, F.C., Melnik, R., Rodriguez Tembleque, L., Saez, A. (2025). Environment friendly technologies with lead free piezoelectric materials: A review of recent developments, applications, and modelling approaches. arXiv preprint, arXiv:2502.13929. https://doi.org/10.48550/arXiv.2502.20250
- Bain, A.K., Chand, B. (2017). Ferroelectrics: Principles and Applications. Chennai: SPi Global Private Limited, 317
- Alessandri, C., Pandey, P., Abusleme, A., Seabaugh, A. (2019). Monte Carlo Simulation of Switching Dynamics in Polycrystalline Ferroelectric Capacitors. Transactions on Electron Devices, 66(8). 3527–3534. https://doi.org/10.1109/TED.2019.2922268
- Cao, W. (2004). Phenomenological theories of ferroelectric phase transitions. British Ceramic Transactions, 103(2), 71–75. https://doi.org/10.1179/096797804225012774
- Uchino, K. (1997). Ferroelectric Devices. New York: Marcel Dekker. 312 p.
- Song, T.K., Kim, J.S., Kim, M.H., Lim, W., Kim, Y.S., Lee, J.C. (2003). Landau–Khalatnikov simulations for the effects of external stress on the ferroelectric properties of Pb(Zr,Ti)O₃ thin films. Thin Solid Films, 424(1), 84–87. https://doi.org/10.1016/S0040-6090(02)00920-3
- Roy, M.K., Swayambhoo M. (2020). Stochastic Dynamics of 180◦ domains. Journal of Mathematical Control Science and Applications, 6(1), 93–105.
- Chen, L.Q. (2002). Phase-field models for microstructure evolution in ferroelectric materials. Annual Review of Materials Research, 32, 113–140. https://doi.org/10.1016/j.commatsci.2023.112510
- Tang, P., Iguchi, R., Uchida, K., Bauer, G.E.W. (2022). Excitations of the ferroelectric order. Physical Review B, 106, L081105. https://doi.org/10.1103/PhysRevB.106.L081105
- He, R., Wang, H., Liu, F., Liu, S., Liu, H., Zhong, Z. (2023). Unconventional ferroelectric domain switching dynamics in CuInP₂S₆ from first principles. Physical Review B, 108, 024305. https://doi.org/10.1103/PhysRevB.108.024305
- Maslovskaya A.G., Moroz L.I., Chebotarev A.Y., Kovtanyuk A.E. (2021). Theoretical and numerical analysis of the Landau–Khalatnikov model of ferroelectric hysteresis. Communications in Nonlinear Science and Numerical Simulation, 93, 105524. https://doi.org/10.1016/j.cnsns.2020.105524
- Roy, M.K., Paul, J., Dattagupta, S. (2010). Domain dynamics and fractal growth analysis in thin ferroelectric films. IEEE Xplore, 108, 014108(4). https://doi.org/10.1063/1.3456505
- Richman, M.S., Rulis P., Caruso A.N. (2017). Ferroelectric system dynamics simulated by a second-order Landau model. Journal of Applied Physics, 122, 094101. https://doi.org/10.1063/1.5000139
- Aliev, A.B., Isayeva, S.E. (2018). The Existence and Behavior of Global Solutions to a Mixed Problem with Acoustic Transmission Conditions for Nonlinear Hyperbolic Equations with Nonlinear Dissipation. Math., 98, 555–558. https://doi.org/10.1134/S1064562418070062
- Barbu, V., Lasiecka, I., Rammaha, M.A. (2005). Existence and uniqueness of solutions to wave equations with nonlinear degenerate damping and source terms. Control and Cybernetics , 34(3).
- Li, P.-W., Hu, S., Zhang, M. (2023). Numerical Solutions of the Nonlinear Dispersive Shallow Water Wave Equations Based on the Space–Time Coupled Generalized Finite Difference Scheme. Applied Sciences , 13(14), 8504. https://doi.org/10.3390/app13148504
- Sap, D. (2025). A hybrid isogeometric and finite element method: NURBS-enhanced finite element method for hexahedral meshes. arXiv preprint, arXiv:2506.13694. https://doi.org/10.48550/arXiv.2506.13694
- Abdelwahed, M., Chorfi, N. (2022). Numerical resolution of the wave equation using the spectral method. Boundary Value Problems, 2022, 15. https://doi.org/10.1186/s13661-022-01601-5
- Gao, Z., Xie, S. (2012). Fourth-order compact difference and alternating direction implicit schemes for telegraph equations. Computer Physics Communications, 183(3), 552–569. https://doi.org/10.1016/j.cpc.2011.11.023
- Chew, J.V.L., Sulaiman, J. (2018). Implicit finite difference solution of one-dimensional porous medium equations using Half-Sweep Newton-Explicit Group iterative method. Journal of Engineering and Applied Sciences, 13(5), 1286–1290.
- Формалев, В.Ф., Ревизников, Д.Л. (2006). Численные методы. Москва: ФИЗМАТЛИТ, 400 с.
Formalev, V.F., Reyznikov, D.L. (2006). Numerical Methods . Moscow: FIZMATLIT, 400 p. (In Russ.) - Hong, J., Fang, D. (2008). Size-dependent ferroelectric behaviors of BaTiO₃ Applied Physics Letters , 92, 012906. https://doi.org/10.1063/1.2830662
Information About the Authors
Contribution of the authors
Moroz L.I. – research concept, annotation, manuscript writing, supervision of the study.
Doroshkov O.S. – application of numerical methods, conducting experiments, programming, data collection and analysis, visualization of results.
All authors participated in the discussion of results and approved the final manuscript text.
Conflict of interest
The authors declare no conflict of interest.
Metrics
Web Views
Whole time: 80
Previous month: 37
Current month: 4
PDF Downloads
Whole time: 26
Previous month: 8
Current month: 0
Total
Whole time: 106
Previous month: 45
Current month: 4