Mathematical model of polarization switching based on the generalised Landau–Khalatnikov–Tani equation: numerical implementation

 
Audio is AI-generated
26

Abstract

The paper presents a review of existing mathematical models describing the dynamics of polarization changes in ferroelectrics based on Landau's thermodynamic theory. Particular attention is given to the generalised Landau–Khalatnikov–Tani model, which accounts for inertial effects and enables the description of hysteresis phenomena. The model is formulated as an initial-boundary value problem for a hyperbolic-type partial differential equation. An implicit finite-difference scheme is constructed for the numerical solution of the problem. Results of computational experiments are presented, demonstrating polarization switching and the formation of dielectric hysteresis in ferroelectric materials undergoing first-order phase transitions.

General Information

Keywords: Landau – Khalatnikov – Tani equation, implicit finite-difference scheme, ferroelectric, polarization hysteresis, computational experiment

Journal rubric: Numerical Methods

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2025150308

Received 03.08.2025

Revised 13.08.2025

Accepted

Published

For citation: Moroz, L.I., Doroshkov, O.S. (2025). Mathematical model of polarization switching based on the generalised Landau–Khalatnikov–Tani equation: numerical implementation. Modelling and Data Analysis, 15(3), 131–147. (In Russ.). https://doi.org/10.17759/mda.2025150308

© Moroz L.I., Doroshkov O.S., 2025

License: CC BY-NC 4.0

References

  1. Рабе, К.М. (Ред.). (2015). Физика сегнетоэлектриков: современный взгляд. Москва: Лаборатория знаний, 443 с.
    Rabe, K.M. (Ed.). (2015). Physics of Ferroelectrics: A Modern Perspective. Moscow: Laboratory of Knowledge, 443 p. (In Russ.)
  2. Мороз, Л.И., Масловская, А.Г. (2018). Метод прогноза и коррекции в задаче численного моделирования фрактальной динамики доменных границ сегнетоэлектриков. Вестник Амурского государственного университета. Серия: Естественные и экономические науки, (83), 3–8.
    Moroz, L.I., Maslovskaya, A.G. (2018). Method of prediction and correction in the problem of numerical modeling of fractal dynamics of ferroelectric domain boundaries. Vestnik Amurskogo gosudarstvennogo universiteta. Seriya: Estestvennye i ekonomicheskie nauki , (83), 3–8. (In Russ.)
  3. Ducharne, B., Newell, B., Sebald, G. (2020). Unique fractional derivative operator to simulate all dynamic piezoceramic dielectric manifestations: from aging to frequency-dependent hysteresis. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(1), 197–206. https://doi.org/10.1109/TUFFC.2019.2938891
  4. Li, Z., Zhang, Y., Wen, H., Dong, C. (2024). Strain and ferroelectric polarization influence on perpendicular magnetic anisotropy of CoFe₃N/BaTiO₃ Results in Physics 57, 107388. https://doi.org/10.1016/j.rinp.2024.107388
  5. Scott, J.F. (2000). Ferroelectric Memories. Heidelberg: Springer Science & Business Media, 248
  6. Wang, B., Xia, R., Fan, H., Woo, C.H. (2003). Dynamic process of domain switching in ferroelectric films. Appl. Phys., 94, 3384. https://doi.org/10.1063/1.1599958
  7. Mazur, O.Y., Stefanovich, L.I., Yurchenko, V.M. (2016). Effect of a weak external electric field on the kinetics of the ordering of ferroelectrics upon first-order phase transitions.  Solid State 58, 1596–1604. https://doi.org/10.1134/S1063783416080205
  8. Zhang, R., Lin, C., Dong, H. et al. (2025). Compositionally-graded ferroelectric thin films by solution epitaxy produce excellent dielectric stability. Nature Communications, 16(98), 1–10. https://doi.org/10.1038/s41467-024-55411-7
  9. Landau, L.D., Ginzburg, V.L. (1965). On the theory of superconductivity. Collected Papers of L.D. Landau, 546–568. https://doi.org/10.1016/B978-0-08-010586-4.50078-X
  10. Akshayveer, A., Buroni, F.C., Melnik, R., Rodriguez Tembleque, L., Saez, A. (2025). Environment friendly technologies with lead free piezoelectric materials: A review of recent developments, applications, and modelling approaches. arXiv preprint, arXiv:2502.13929. https://doi.org/10.48550/arXiv.2502.20250
  11. Bain, A.K., Chand, B. (2017). Ferroelectrics: Principles and Applications. Chennai: SPi Global Private Limited, 317
  12. Alessandri, C., Pandey, P., Abusleme, A., Seabaugh, A. (2019). Monte Carlo Simulation of Switching Dynamics in Polycrystalline Ferroelectric Capacitors. Transactions on Electron Devices, 66(8). 3527–3534. https://doi.org/10.1109/TED.2019.2922268
  13. Cao, W. (2004). Phenomenological theories of ferroelectric phase transitions. British Ceramic Transactions, 103(2), 71–75. https://doi.org/10.1179/096797804225012774
  14. Uchino, K. (1997). Ferroelectric Devices. New York: Marcel Dekker. 312 p.
  15. Song, T.K., Kim, J.S., Kim, M.H., Lim, W., Kim, Y.S., Lee, J.C. (2003). Landau–Khalatnikov simulations for the effects of external stress on the ferroelectric properties of Pb(Zr,Ti)O₃ thin films. Thin Solid Films, 424(1), 84–87. https://doi.org/10.1016/S0040-6090(02)00920-3
  16. Roy, M.K., Swayambhoo M. (2020). Stochastic Dynamics of 180◦ domains. Journal of Mathematical Control Science and Applications, 6(1), 93–105.
  17. Chen, L.Q. (2002). Phase-field models for microstructure evolution in ferroelectric materials. Annual Review of Materials Research, 32, 113–140. https://doi.org/10.1016/j.commatsci.2023.112510
  18. Tang, P., Iguchi, R., Uchida, K., Bauer, G.E.W. (2022). Excitations of the ferroelectric order. Physical Review B, 106, L081105. https://doi.org/10.1103/PhysRevB.106.L081105
  19. He, R., Wang, H., Liu, F., Liu, S., Liu, H., Zhong, Z. (2023). Unconventional ferroelectric domain switching dynamics in CuInP₂S₆ from first principles. Physical Review B, 108, 024305. https://doi.org/10.1103/PhysRevB.108.024305
  20. Maslovskaya A.G., Moroz L.I., Chebotarev A.Y., Kovtanyuk A.E. (2021). Theoretical and numerical analysis of the Landau–Khalatnikov model of ferroelectric hysteresis. Communications in Nonlinear Science and Numerical Simulation, 93, 105524. https://doi.org/10.1016/j.cnsns.2020.105524
  21. Roy, M.K., Paul, J., Dattagupta, S. (2010). Domain dynamics and fractal growth analysis in thin ferroelectric films. IEEE Xplore, 108, 014108(4). https://doi.org/10.1063/1.3456505
  22. Richman, M.S., Rulis P., Caruso A.N. (2017). Ferroelectric system dynamics simulated by a second-order Landau model. Journal of Applied Physics, 122, 094101. https://doi.org/10.1063/1.5000139
  23. Aliev, A.B., Isayeva, S.E. (2018). The Existence and Behavior of Global Solutions to a Mixed Problem with Acoustic Transmission Conditions for Nonlinear Hyperbolic Equations with Nonlinear Dissipation. Math., 98, 555–558. https://doi.org/10.1134/S1064562418070062
  24. Barbu, V., Lasiecka, I., Rammaha, M.A. (2005). Existence and uniqueness of solutions to wave equations with nonlinear degenerate damping and source terms. Control and Cybernetics , 34(3).
  25. Li, P.-W., Hu, S., Zhang, M. (2023). Numerical Solutions of the Nonlinear Dispersive Shallow Water Wave Equations Based on the Space–Time Coupled Generalized Finite Difference Scheme. Applied Sciences , 13(14), 8504. https://doi.org/10.3390/app13148504
  26. Sap, D. (2025). A hybrid isogeometric and finite element method: NURBS-enhanced finite element method for hexahedral meshes. arXiv preprint, arXiv:2506.13694. https://doi.org/10.48550/arXiv.2506.13694
  27. Abdelwahed, M., Chorfi, N. (2022). Numerical resolution of the wave equation using the spectral method. Boundary Value Problems, 2022, 15. https://doi.org/10.1186/s13661-022-01601-5
  28. Gao, Z., Xie, S. (2012). Fourth-order compact difference and alternating direction implicit schemes for telegraph equations. Computer Physics Communications, 183(3), 552–569. https://doi.org/10.1016/j.cpc.2011.11.023
  29. Chew, J.V.L., Sulaiman, J. (2018). Implicit finite difference solution of one-dimensional porous medium equations using Half-Sweep Newton-Explicit Group iterative method. Journal of Engineering and Applied Sciences, 13(5), 1286–1290.
  30. Формалев, В.Ф., Ревизников, Д.Л. (2006). Численные методы. Москва: ФИЗМАТЛИТ, 400 с.
    Formalev, V.F., Reyznikov, D.L. (2006). Numerical Methods . Moscow: FIZMATLIT, 400 p. (In Russ.)
  31. Hong, J., Fang, D. (2008). Size-dependent ferroelectric behaviors of BaTiO₃ Applied Physics Letters , 92, 012906. https://doi.org/10.1063/1.2830662

Information About the Authors

Lubove I. Moroz, Candidate of Science (Physics and Matematics), Laboratory for Modeling Complex Physical and Biological Systems, Amur State University, Blagoveshchensk, Russian Federation, ORCID: https://orcid.org/0000-0003-4450-3200, e-mail: lubovep@mail.ru

Oleg S. Doroshkov, Bachelor of Science in Applied Mathematics and Computer Science, Institute of Computer Science and Engineering, Amur State University, Blagoveshchensk, Russian Federation, e-mail: oleg2003dos@gmail.com

Contribution of the authors

Moroz L.I. – research concept, annotation, manuscript writing, supervision of the study. 

Doroshkov O.S. – application of numerical methods, conducting experiments, programming, data collection and analysis, visualization of results. 

All authors participated in the discussion of results and approved the final manuscript text.

Conflict of interest

The authors declare no conflict of interest.

Metrics

 Web Views

Whole time: 80
Previous month: 37
Current month: 4

 PDF Downloads

Whole time: 26
Previous month: 8
Current month: 0

 Total

Whole time: 106
Previous month: 45
Current month: 4