The concept of Decision Support System for psychological testing

1241

Abstract

The concept of a decision support system designed to optimize the order of tasks during psychological testing and based on trained continuous-time Markov models is presented. Diagnostic conclusions are derived using probabilistic estimates of being in different subject’s classes. These estimates are improved during testing procedure. Selection of a regular task is carried out for each subject individually, with previous testing outcome and forecasting the discriminating fineness of future tasks being in use.

General Information

Keywords: Markov models, psychological testing, identification of Markov models, decision support system

Journal rubric: Psychological Diagnostics

Article type: scientific article

For citation: Kuravsky L.S., Margolis A.A., Yuryev G.A., Marmalyuk P.A. The concept of Decision Support System for psychological testing. Psikhologicheskaya nauka i obrazovanie = Psychological Science and Education, 2012. Vol. 17, no. 1, pp. 56–65. (In Russ., аbstr. in Engl.)

References

  1. Galushkin A.I. Nejronnye seti. Osnovy teorii. M., 2010.
  2. Golovko V. A. Nejronnye seti: obuchenie, organizacija i primenenie: Ucheb. posobie. M., 2001.
  3. Dzhekson P. Vvedenie v jekspertnye sistemy: Ucheb. posobie. M., 2001.
  4. Dzhons M.T. Programmirovanie iskusstvennogo intellekta v prilozhenijah. M., 2004.
  5. Kramer G. Matematicheskie metody statistiki. M., 1976.
  6. Kuravskij L.S., Baranov S.N. Primenenie nejronnyh setej dlja diagnostiki i prognozirovanija ustalostnogo razrushenija tonkostennyh konstrukcij // Nejrokomp'jutery: razrabotka i primenenie. 2001. № 12.
  7. Kuravskij L.S., Baranov S.N. Sintez setej Markova dlja prognozirovanija ustalostnogo razrushenija // Nejrokomp'jutery: razrabotka i primenenie. 2002. № 12.
  8. Kuravskij L.S., Baranov S.N., Kornienko P.A. Obuchaemye mnogofaktornye seti Markova i ih primenenie dlja issledovanija psihologicheskih harakteristik // Nejrokomp'jutery: razrabotka i primenenie. 2005. № 12.
  9. Kuravskij L.S., Baranov S.N., Jur'ev G.A. Sintez i identifikacija skrytyh markovskih modelej dlja diagnostiki ustalostnogo razrushenija // Nejrokomp'jutery: razrabotka i primenenie. 2010. № 12.
  10. Kuravskij L.S., Margolis A.A., Jur'ev G.A. Psihologicheskij trening na osnove nejrosetevoj tehnologii // Nejrokomp'jutery: razrabotka i primenenie. 2009. № 9.
  11. Kuravskij L.S., Jur'ev G.A. Ispol'zovanie markovskih modelej pri obrabotke rezul'tatov testirovanija // Voprosy psihologii. 2011. № 2.
  12. Ljuger Dzh. F. Iskusstvennyj intellekt: strategii I metody reshenija slozhnyh problem. M., 2003.
  13. Ovcharov L.A. Prikladnye zadachi teorii massovogo obsluzhivanija. M., 1969.
  14. Psihodiagnostika v Rossii cherez 5 let // Psihologija. Zhurn. Vysshej shkoly jekonomiki. T. 5. 2008. № 4.
  15. Saati T.L. Jelementy teorii massovogo obsluzhivanija i ejo prilozhenija. M., 2010.
  16. Kuravsky L.S. and Baranov S.N. Condition monitoring of the structures suffered acoustic fatigue failure and forecasting their service life. Proc. Condition Monitoring 2003, Oxford, United Kingdom, July 2003.
  17. Kuravsky L.S. and Baranov S.N. Neural networks in fatigue damage recognition: diagnostics and statistical analysis // Proc. 11th International Congress on Sound and Vibration, St.-Petersburg, July 2004.
  18. Kuravsky L.S. and Baranov S.N. The concept of multifactor Markov networks and its application to forecasting and diagnostics of technical systems // Proc. Condition Monitoring 2005, Cambridge, United Kingdom, July 2005.
  19. Kuravsky L.S., Baranov S.N. and Yuryev G.A. Synthesis and identification of hidden Markov models based on a novel statistical technique in condition monitoring // Proc. 7th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, Stratford-upon-Avon, England, June 2010.
  20. URL: http:// www.solver.com.

Information About the Authors

Lev S. Kuravsky, Doctor of Engineering, professor, Dean of the Computer Science Faculty, Moscow State University of Psychology and Education, Moscow, Russia, ORCID: https://orcid.org/0000-0002-3375-8446, e-mail: l.s.kuravsky@gmail.com

Arkadiy A. Margolis, PhD in Psychology, Rector, Professor, Chair of Pedagogical Psychology, Moscow State University of Psychology & Education, Moscow, Russia, ORCID: https://orcid.org/0000-0001-9832-0122, e-mail: margolisaa@mgppu.ru

Grigory A. Yuryev, PhD in Physics and Matematics, Associate Professor, Head of Department of the Computer Science Faculty, Leading Researcher, Youth Laboratory Information Technologies for Psychological Diagnostics, Moscow State University of Psychology and Education, Moscow, Russia, ORCID: https://orcid.org/0000-0002-2960-6562, e-mail: g.a.yuryev@gmail.com

Pavel A. Marmalyuk, PhD in Engineering, Head of the Laboratory of Psychology and Applied Software, Moscow State University of Psychology & Education, associate professor, Department of Information Technologies, Moscow State University of Psychology & Education, Moscow, Russia, e-mail: ykk.mail@gmail.com

Metrics

Views

Total: 4230
Previous month: 7
Current month: 17

Downloads

Total: 1241
Previous month: 1
Current month: 0