Psychological Science and Education
2012. Vol. 17, no. 1, 56–65
ISSN: 1814-2052 / 2311-7273 (online)
The concept of Decision Support System for psychological testing
Abstract
General Information
Keywords: Markov models, psychological testing, identification of Markov models, decision support system
Journal rubric: Psychological Diagnostics
Article type: scientific article
For citation: Kuravsky L.S., Margolis A.A., Yuryev G.A., Marmalyuk P.A. The concept of Decision Support System for psychological testing. Psikhologicheskaya nauka i obrazovanie = Psychological Science and Education, 2012. Vol. 17, no. 1, pp. 56–65. (In Russ., аbstr. in Engl.)
Full text
Введение
В современных условиях не всегда удаётся обеспечивать постоянный личный контакт преподавателей психологической диагностики со студентами с целью передачи необходимого неформального профессионального опыта. Это обусловлено тем, что аудиторные занятия ограничены по времени, а число студентов достаточно велико. Для повышения эффективности преподавания используются различные средства, которые не только дают знания о правилах применения каждой конкретной методики, но и навыки корректного проведения диагностических процедур, а также наблюдений за испытуемыми. В частности, с этой целью студентам демонстрируются соответствующие видеозаписи работы авторитетных специалистов с подробными комментариями. Иногда практикуется работа студентов в парах, когда они диагностируют своих товарищей. Однако эти приёмы не обеспечивают накопления достаточного практического опыта, и тестирование остаётся затянутой по времени и трудоёмкой процедурой.
Если практикующему специалисту для принятия решений требуется относительно короткий промежуток времени, за который он сможет дать всестороннюю оценку, то сотрудники с меньшим опытом, как правило, подходят к процессу достаточно формально. Они применяют заранее заготовленный набор методик, полностью проводят их в рекомендуемом порядке, что может занимать значительное время и утомить испытуемого, исказив полученный результат.
В подобных случаях полезны системы поддержки принятия решений [14], которые ускоряют процесс тестирования при использовании результатов математического моделирования. Это ускорение может быть связано, в частности, с анализом временнόй динамики прохождения каждого теста, косвенно отражающей уровень способностей. Подобный инструмент даёт практикующему специалисту дополнительную информацию для анализа и предоставляет рекомендации по выбору следующего теста, обладающего, по сравнению с прочими, наибольшей для данного испытуемого дифференцирующей способностью. Такие рекомендации, не являясь обязательными и не лишая специалиста возможности получения собственного опыта, направляют его по наиболее эффективному и надёжному пути. Следует отметить, что процесс тестирования при этом не становится полностью автоматическим в силу многокомпонентности процедуры оценки способностей и наличия дополнительных неформализуемых критериев.
Перспективность и актуальность данного подхода при обучении студентов-психологов обусловлена тем, что им при работе с психометрическими методиками часто недостает наблюдений, обязательных для накопления опыта клинического и личностного анализа, что приводит к значительным затратам финансовых, временных и других ресурсов, необходимых для получения полезной информации. Несмотря на то что интеллектуальные системы не дают навыков непосредственного общения с респондентом и соответствующего профессионального опыта, они позволяют в реальных условиях сосредоточиться на освоении важнейших особенностей практической работы с испытуемыми. К преимуществам этих систем относятся:
- удобство адаптации под любые методики;
- повышение доступности знаний, необходимых для специалиста;
- развитие навыков самостоятельной работы у студентов;
- повышение надёжности результатов тестирования;
- интенсификация процесса тестирования.
В основу математической концепции построения подобных систем и их программной реализации могут быть положены различные принципы организации и аппарат: определённые типы нейронных сетей [1; 2; 6; 10;17], экспертные системы [3; 4;12], обучаемые сети Маркова [7–9;11;16;18;19] и другие структуры. Однако сравнительный анализ показал, что перечисленные средства, за исключением марковских моделей и нейронных сетей, не обеспечивают должную универсальность и простоту адаптации к новым тестам, для каждого из которых фактически приходится разрабатывать отдельный специализированный программный продукт. С учетом развитых возможностей для вероятностного прогнозирования, отработанного аппарата идентификации [9;11;16;18] и простоты интерпретации полученных результатов, наиболее подходящим типом математических моделей для реализации поддержки принятия решений при проведении психологического тестирования, а также для организации психологического тренинга оказались марковские процессы с непрерывным временем.
В этой работе рассмотрена концепция системы поддержки принятия решений, предназначенной для использования в процессе психологического тестирования. Этот подход может быть использован при создании инструментальных средств, предназначенных для диагностики способностей и компетенций, а также организации и совершенствования процесса обучения.
Математические модели для представления динамики прохождения тестов
References
- Galushkin A.I. Nejronnye seti. Osnovy teorii. M., 2010.
- Golovko V. A. Nejronnye seti: obuchenie, organizacija i primenenie: Ucheb. posobie. M., 2001.
- Dzhekson P. Vvedenie v jekspertnye sistemy: Ucheb. posobie. M., 2001.
- Dzhons M.T. Programmirovanie iskusstvennogo intellekta v prilozhenijah. M., 2004.
- Kramer G. Matematicheskie metody statistiki. M., 1976.
- Kuravskij L.S., Baranov S.N. Primenenie nejronnyh setej dlja diagnostiki i prognozirovanija ustalostnogo razrushenija tonkostennyh konstrukcij // Nejrokomp'jutery: razrabotka i primenenie. 2001. № 12.
- Kuravskij L.S., Baranov S.N. Sintez setej Markova dlja prognozirovanija ustalostnogo razrushenija // Nejrokomp'jutery: razrabotka i primenenie. 2002. № 12.
- Kuravskij L.S., Baranov S.N., Kornienko P.A. Obuchaemye mnogofaktornye seti Markova i ih primenenie dlja issledovanija psihologicheskih harakteristik // Nejrokomp'jutery: razrabotka i primenenie. 2005. № 12.
- Kuravskij L.S., Baranov S.N., Jur'ev G.A. Sintez i identifikacija skrytyh markovskih modelej dlja diagnostiki ustalostnogo razrushenija // Nejrokomp'jutery: razrabotka i primenenie. 2010. № 12.
- Kuravskij L.S., Margolis A.A., Jur'ev G.A. Psihologicheskij trening na osnove nejrosetevoj tehnologii // Nejrokomp'jutery: razrabotka i primenenie. 2009. № 9.
- Kuravskij L.S., Jur'ev G.A. Ispol'zovanie markovskih modelej pri obrabotke rezul'tatov testirovanija // Voprosy psihologii. 2011. № 2.
- Ljuger Dzh. F. Iskusstvennyj intellekt: strategii I metody reshenija slozhnyh problem. M., 2003.
- Ovcharov L.A. Prikladnye zadachi teorii massovogo obsluzhivanija. M., 1969.
- Psihodiagnostika v Rossii cherez 5 let // Psihologija. Zhurn. Vysshej shkoly jekonomiki. T. 5. 2008. № 4.
- Saati T.L. Jelementy teorii massovogo obsluzhivanija i ejo prilozhenija. M., 2010.
- Kuravsky L.S. and Baranov S.N. Condition monitoring of the structures suffered acoustic fatigue failure and forecasting their service life. Proc. Condition Monitoring 2003, Oxford, United Kingdom, July 2003.
- Kuravsky L.S. and Baranov S.N. Neural networks in fatigue damage recognition: diagnostics and statistical analysis // Proc. 11th International Congress on Sound and Vibration, St.-Petersburg, July 2004.
- Kuravsky L.S. and Baranov S.N. The concept of multifactor Markov networks and its application to forecasting and diagnostics of technical systems // Proc. Condition Monitoring 2005, Cambridge, United Kingdom, July 2005.
- Kuravsky L.S., Baranov S.N. and Yuryev G.A. Synthesis and identification of hidden Markov models based on a novel statistical technique in condition monitoring // Proc. 7th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, Stratford-upon-Avon, England, June 2010.
- URL: http:// www.solver.com.
Information About the Authors
Metrics
Views
Total: 4068
Previous month: 8
Current month: 1
Downloads
Total: 1224
Previous month: 0
Current month: 1