Psychological-Educational Studies
2022. Vol. 14, no. 4, 127–146
doi:10.17759/psyedu.2022140408
ISSN: 2587-6139 (online)
Research Training and Machine Learning: from Matching to Convergence
Abstract
Empowerment of human capabilities with new technologies that can increase labor productivity is an ever-increasing trend. The exponential rate of progress is demonstrated by artificial intelligence technologies. Existing applied solutions with the use of machine learning in pedagogy are analyzed, ways of its extrapolation to the convergence model of research training and machine learning are shown. As a basic idea, there are ideas generally accepted in the scientific community about the structure of education. The addition of this concept with the possibilities of quantitative content analysis made it possible to clarify the essence of “machine learning”, to substantiate its place among such related semantic concepts as “artificial intelligence” and “neural networks”. The applied systematic approach contributed to the identification of latent links between research training and machine learning, including the importance of a variety of structured and unstructured data on the subjects and objects of research training, the reliability of the data sources used. The SWOT analysis made it possible to substantiate the expediency of introducing and further developing the concept of “digital research profile” as one of the possible options for the convergence of man and machine, as well as to identify promising areas for the development of traditional pedagogical systems based on artificial intelligence.
General Information
Keywords: education digitalization, digital research profile, research training, artificial intelligence, machine learning, neural network, deep learning, convergence
Journal rubric: Methodology and Technology of Education
Article type: scientific article
DOI: https://doi.org/10.17759/psyedu.2022140408
Received: 03.11.2022
Accepted:
For citation: Osipenko L.Ye, Kozitsyna Yu.V., Korotkov A.V. Research Training and Machine Learning: from Matching to Convergence [Elektronnyi resurs]. Psychological-Educational Studies, 2022. Vol. 14, no. 4, pp. 127–146. DOI: 10.17759/psyedu.2022140408. (In Russ., аbstr. in Engl.)
References
1. Brink H., Richards J., Fetherolf M. Mashinnoe obuchenie [Machine learning]. Saint Petersburg, 2017. 336 p. (In Russ.).
2. Brokman J. Chto my dumaem o mashinah, kotorye dumayut: Vedushchie mirovye uchenye ob iskusstvennom intellekte [What do we think about machines that think: The world's leading scientists on artificial intelligence]. Moscow: Publ. Alpina, 2017. 548 p. (In Russ.).
3. Burkov A. Mashinnoe obuchenie bez lishnih slov [Machine learning without further ado]. Saint Petersburg, 2020. 192 p. (In Russ.).
4. Dushkin R.V. Iskusstvennyj intellect [Artificial intelligence]. Moscow: Publ. DMK Press, 2019. 280 p. (In Russ.).
5. Evgrafov I.E., Shamgullina G.R., Borovik S.G. Rol' i znachenie pedagogicheskogo kontrolya v upravlenii obrazovatel'nym processom [The role and importance of pedagogical control in the management of the educational process]. Problemy sovremennogo pedagogicheskogo obrazovaniya [Problems of modern teacher education], 2019, no. 64-1, pp. 102–105. (In Russ.).
6. Zimnyaya I.A. Issledovatel'skaya rabota kak specificheskij vid chelovecheskoj deyatel'nosti [Research work as a specific type of human activity]. Moscow, 2001. 103 p. (In Russ.).
7. Zotov A.F. E. Mejerson o strukture nauchnogo znaniya i zakonomernostyah ego razvitiya [E. Meyerson on the structure of scientific knowledge and the patterns of its development]. Koncepcii nauki v burzhuaznoj filosofii i sociologii: Vtoraya polovina XIX–XX v [Concepts of Science in Bourgeois Philosophy and Sociology: The Second Half of the 19th–20th Centuries]. 249 p. (In Russ.).
8. Ippolitova N.V., Sterhova N.S. Vidy i formy organizacii issledovatel'skoj deyatel'nosti studentov pedvuza [Types and Forms of Organization of Research Activities of Pedagogical University Students]. Vestnik Shadrinskogo gosudarstvennogo pedagogicheskogo universiteta [Bulletin of the Shadrinsk State Pedagogical University], 2015, no. 1(25), pp. 41–49. (In Russ.).
9. Koval'chuk M.V. Ot sinteza v nauke – k konvergencii v obrazovanii. Interv'yu M.V. Koval'chuka [From synthesis in science to convergence in education. Interview with M.V. Kovalchuk]. Trudy MFTI [Proceedings of the Moscow Institute of Physics and Technology], 2011, no. 4. Available at: https://cyberleninka.ru/article/n/ot-sinteza-v-nauke-k-konvergentsii-v-obrazovanii-intervyu-m-v-kovalchuka (Accessed 25.10.2022). (In Russ.).
10. Kopnin P.V. Logicheskie osnovy nauki [Logical Foundations of Science]. Kiev: Naukova dumka [Scientific thought], 1968. 282 p. (In Russ.).
11. Korotkov A.V. Opredelenie dostovernosti i avtoritetnosti upravlencheskoj informacii v internete [Determination of the reliability and authority of management information on the Internet]. Izvestiya instituta pedagogiki i psihologii obrazovaniya [Proceedings of the Institute of Pedagogy and Psychology of Education]. Available at: http://izvestia-ippo.ru/a-v-korotkov-opredelenie-dostovernos/ (Accessed 03.10.2022). (In Russ.).
12. Coehlo L.P., Richert W. Postroenie sistem mashinnogo obucheniya na yazyke Python [Building machine learning systems in Python]. Moscow, 2016. 302 p. (In Russ.).
13. Kuleshov A.P., V'yugin V.V. Matematicheskie osnovy mashinnogo obucheniya i prognozirovaniya [Mathematical Foundations of Machine Learning and Prediction]. Moscow, 2014. 304 p. (In Russ.).
14. Osipenko L.Ye., Kozicyna Yu.V., Kopotkov A.V. Cifrovoj profil' shkol'nika: potencial'nye vozmozhnosti i bezopasnost' cifrovoj socializacii [Student's Digital Profile: Potential Opportunities and Security of Digital Socialization]. Obshchestvo: sociologiya, psihologiya, pedagogika [Society: sociology, psychology, pedagogy], 2022, no. 8, pp. 158–163. DOI:10.24158/spp.2022.8.23 (In Russ.).
15. Page S. Model'noe myshlenie. Kak analizirovat' slozhnye yavleniya s pomoshch'yu matematicheskih modelej [Modeling thinking. How to analyze complex phenomena using mathematical models]. Moscow: Publ. Mann, Ivanov and Ferber, 2020. 528 p. (In Russ.).
16. Pikalova E.P. Issledovatel'skaya deyatel'nost' uchashchihsya – odin iz sposobov povysheniya uchebnoj motivacii [Research activities of students – one of the ways to increase learning motivation]. Materialy V Mezhdunar. nauch. Konf. «Aktual'nye zadachi pedagogiki» (g. Chita, aprel’ 2014 g.) [Proceedings of the V International Scientific Conference "Actual tasks of pedagogy"]. Chita: Publ. Izdatel'stvo Molodoj uchenyj, 2014, p. 138–140. Available at: https://moluch.ru/conf/ped/archive/102/5425/ (Accessed 31.08.2022). (In Russ.).
17. Potapova M. Garant. Rossiya 2050: Utopii i prognozy. 2-e izd. [Russia 2050: Utopias and Forecasts. 2nd ed.]. Moscow, 2021. 600 p. (In Russ.).
18. Rashka S. Python i mashinnoe obuchenie [Python and machine learning]. Moscow, 2017. 418 p. (In Russ.).
19. Savenkov A.I., Osipenko L.Ye. Trening issledovatel'skih sposobnostej shkol'nikov [Training of research abilities of schoolchildren]. Moscow: Publ. Binom, 2021. 160 p. (In Russ.).
20. Sampter D. Desyat' uravnenij, kotorye pravyat mirom. I kak ih mozhete ispol'zovat' vy. [Ten equations that rule the world. And How You Can Use Them]. 2022. 288 p. (In Russ.).
21. Stepin V.S. Metody nauchnogo poznaniya [Methods of scientific knowledge]. Minsk: Publ. Vysh. shk., 1974. 152 p. (In Russ.).
22. Trubnikov N.N. O kategoriyah «cel'», «sredstvo», «rezul'tat» [On the categories "goal", "means", "result"]. Minsk: Publ. Vyssh. shk., 1968. 147 p. (In Russ.).
23. Flach P. Mashinnoe obuchenie. Nauka i iskusstvo postroeniya algoritmov, kotorye izvlekayut znaniya iz dannyh [Machine Learning: The Art and Science of Algorithms That Make Sense of Data]. Moscow, 2015. 400 p. (In Russ.).
24. Chirkunova E.K. Organizaciya issledovatel'skoj deyatel'nosti [Organization of research activities]. Samara: Publ. Samara University Publishing House, 2018. 24 p. (In Russ.).
25. Shukla N. Mashinnoe obuchenie & TensorFlow [Machine Learning with TensorFlow]. Saint Petersburg, 2019. 336 p. (In Russ.).
26. Sjardin B., Massaron L., Boschetti A. Krupnomasshtabnoe mashinnoe obuchenie vmeste s Python [Large Scale Machine Learning with Python]. Moscow, 2018. 358 p. (In Russ.).
27. Shvyrev V.S. Teoreticheskoe i empiricheskoe v nauchnom poznanii [Theoretical and empirical in scientific knowledge]. Moscow: Publ. Nauka, 1978. 381 p. (In Russ.).
28. Shtoff V.A. Problemy metodologii nauchnogo poznaniya [Problems of methodology of scientific knowledge]. Minsk: Publ. Vyssh. shk., 1979. 271 p. (In Russ.).
29. GK «Rostekh», Press-reliz [Rostec State Corporation, Press release]. Available at: https://rostec.ru/media/pressrelease/rostekh-predstavil-it-sistemu-dlya-otsenki-emotsionalnogo-sostoyaniya-uchashchikhsya/ (Accessed 22.08.2022). (In Russ.).
30. Machine Learning made for .NET. Available at: http://dot.net/ml (Accessed 15.09.2022).
31. Open Neural Networks Library. Available at: http://www.opennn.net (Accessed 15.09.2022).
32. TensorFlow. Available at: https://tensorflow.org (Accessed 15.09.2022).
33. Holmes W., Bialik M., Fadel Ch. Artificial Intelligence In Education: Promises and Implications for Teaching and Learning, 2019. 242 p.
34. Sarsby A. SWOT Analysis, 2016. 86 p.
35. Taulli T. Artificial Intelligence Basics: A Non-Technical Introduction, 2019. 199 p.
Information About the Authors
Metrics
Views
Total: 647
Previous month: 23
Current month: 7
Downloads
Total: 264
Previous month: 7
Current month: 6