Social Sciences and Childhood
2025. Vol. 6, no. 3, 50–64
doi:10.17759/ssc.2025060304
ISSN: 2713-0584 (online)
Epigenetic foundations of providing support to children left without parental care
Abstract
Context and relevance. This article presents a review of studies in the field of epigenetics that describe external factors capable of altering the epigenetic landscape of a child’s genome and adversely affecting their subsequent development. These factors include traumatic historical events (the Dutch “Hunger Winter” and the Quebec “Ice Storm”), parental smoking, maternal nutritional patterns during pregnancy, and maternal relinquishment of the child. Objective. To identify epigenetic foundations for providing support to children deprived of parental care. Hypothesis. Effective prevention of social orphanhood and assistance to children with developmental impairments require consideration of environmental influences on the child’s genomic epigenetic status. Methods and materials. The study was conducted as a desk-based (literature-based) review employing thematic synthesis across the following domains: prenatal factors, postnatal conditions, molecular epigenetic mechanisms, long-term consequences, and recommendations for support — with a specific focus on children deprived of parental care, both in institutional settings and foster families. Results. Prevention of adverse epigenetic modifications should begin with support for the pregnant mother, as the most profound gene-regulatory alterations affecting the child’s health occur during the prenatal period. Exposure to adverse and unsafe postnatal environments disrupts the child’s stress-response mechanisms, which may subsequently manifest during adolescence as “dysregulated” behavior and lead to foster family disruption (i.e., the foster family’s decision to discontinue care). Conclusions. Support for pregnant mothers is essential, given that the most severe epigenetic alterations influencing child health originate in utero. To prevent and mitigate disruptions in stress-response mechanisms among adolescents, foster parents should receive specialized training during the pubertal period. Adolescents themselves should be offered behavioral therapy aimed at partially compensating for impaired biological stress-response pathways through the acquisition of specific behavioral patterns that facilitate coping with stressful situations. An additional support mechanism for both the child and the foster family involves professional crisis or emergency intervention during periods of acute behavioral deterioration in adolescence, when the foster family is unable to manage the child’s needs.
General Information
Keywords: epigenetic landscape, children left without parental care, genes, methylation, external factors, socio-psychological support
Journal rubric: Social Psychology
Article type: scientific article
DOI: https://doi.org/10.17759/ssc.2025060304
Received 30.09.2025
Revised 10.10.2025
Accepted
Published
For citation: Nikolaeva, E.I., Dydenkova, E.A., Semya, G.V. (2025). Epigenetic foundations of providing support to children left without parental care. Social Sciences and Childhood, 6(3), 50–64. (In Russ.). https://doi.org/10.17759/ssc.2025060304
© Nikolaeva E.I., Dydenkova E.A., Semya G.V., 2025
License: CC BY-NC 4.0
References
- Николаева, Е.И., Дыденкова, Е.А. (2023). Эпигенетические особенностей детей с разным опытом институализации. Вопросы психологии, 69(1), 127—139. URL: https://www.elibrary.ru/hyrgjt (дата обращения: 15.09.2025).
Nikolaeva, E.I., Dydenkova, E.A. (2023). Epigenetic features of children with different institutionalization. Voprosy Psychologii, 69(1), 127—139. (In Russ.). URL: https://www.elibrary.ru/hyrgjt (viewed: 15.09.2025). - Николаева, Е.И., Дыденкова, Е.А. (2024). Отношение приемных и биологических родителей к тактильному взаимодействию с детьми. Перспективы науки и образования, 5(71), 557—572. https://doi.org/10.32744/pse.2024.5.32
Nikolaeva, E.I., Dydenkova, E.A. (2024). Attitude of adoptive and biological parents to tactile interaction with children. Perspectives of Science and Education, 5(71), 557—572. (In Russ.). https://doi.org/10.32744/pse.2024.5.32 - Одинцова, В.В., Сайфитдинова, А.Ф., Наумова, О.Ю. (2018). Курение матери и нарушения метилирования ДНК у детей на ранних стадиях развития. Акушерство и гинекология, 9, 5—12. https://doi.org/10.18565/aig.2018.9.5-12
Odintsova, V.V., Sayfitdinova, A.F., Naumova, O.Y. (2018). Maternal smoking and DNA methylation abnormalities in children at early developmental stages. Obstetrics and Gynecology, 9, 5—12. (In Russ.). https://doi.org/10.18565/aig.2018.9.5-12 - Федорин, Д.Н., Епринцев, А.Т. (2022). Метилирование ДНК как способ регуляции экспрессии генов. Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация, 2, 44—51. URL: https://www.elibrary.ru/item.asp?id=49244092 (дата обращения: 15.09.2025).
Fedorin, D.N., Eprintsev, A.T. (2022). DNA methylation as a method of regulation of gene expression. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2, 44—51. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=49244092 (viewed: 15.09.2025). - Эллис, С.Д., Капаррос, М.-Л., Дженювейн, Т., Рейнберг, Д. (Ред.). (2021). Эпигенетика (2-е изд.). Пер. с англ. М.: Техносфера.
Allis, S.D., Caparros, M.-L., Jenuwein, T., Reinberg, D. (Eds.). (2021). Epigenetics (2nd ed.). Trans. from Engl. Moscow: Tekhnosfera Publ. (In Russ.). - Banik, A., Kandilya, D., Ramya, S., Stünkel, W., Seng, Ch.Y., Dheen, S.T. (2017). Maternalfactors that induce epigenetic changes contribute to neurological disorders in offspring. Genes (Basel), 8(6), Article 150. https://doi.org/10.3390/genes8060150
- Barker, D.J. (2002). Fetal programming of coronary heart disease. Trends in Endocrinology & Metabolism, 13(9), 364—368. https://doi.org/10.1016/s1043-2760(02)00689-6
- Barton, H.A., Cogliano, V.J., Flowers, L., Valcovic, L., Setzer, R.W., Woodruff, T.J. (2005). Assessing susceptibility from early-life exposure to carcinogens. Environmental Health Perspectives, 113(9), 1125—1133. https://doi.org/10.1289/ehp.7667
- Boyce, W.T., Kobor, M.S. (2015). Development and the epigenome: The “synapse” of gene–environment interplay. Developmental Science, 18(1), 1—23. https://doi.org/10.1111/desc.12282
- Brown, A.S., Susser, E.S. (2008). Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophrenia Bulletin, 34(6), 1054—1063. https://doi.org/10.1093/schbul/sbn096
- Burger, G.C.E., Sandstead, H.R., Drummond, J.C. (1948). Starvation in Western Holland: 1945. The Lancet, 246(6366), 282—283. https://doi.org/10.1016/S0140-6736(45)90738-0
- Cao-Lei, L., Dancause, K.N., Elgbeili, G., Massart, R., Szyf, M., Liu, A., Laplante, D.P., King, S. (2015). DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 13½ years: Project Ice Storm. Epigenetics, 10(8), 749—761. https://doi.org/10.1080/15592294.2015.1063771
- Dydenkova, E., McGlone, F., Mayorova, L., Nikolaeva, E. (2024). The impact of early life experiences on inhibitory control and working memory. Frontiers in Psychology, 15, Article 1484424. https://doi.org/10.3389/fpsyg.2024.1484424
- Eaton, D.L. (2005). Toxicology. In: L. Rosenstock, M.R. Cullen, C.A. Brodkin, C.A. Redlich (Eds.). Textbook of Clinical Occupational and Environmental Medicine (pp. 83—118). NY: General State Printing Office. https://doi.org/10.1016/B978-0-7216-8974-6.50009-9
- Eriksson, J.G. (2011). Early growth and coronary heart disease and type 2 diabetes: findings from the Helsinki Birth Cohort Study (HBCS). The American Journal of Clinical Nutrition, 94(6(S)), 1799S—1802S. https://doi.org/10.3945/ajcn.110.000638
- Gunnar, M.G., Bowen, M. (2021). What was learned from studying the effects of early institutional deprivation. Pharmacology, Biochemistry and Behavior, 210, Article 173272. https://doi.org/10.1016/j.pbb.2021.173272
- Hartwell, K.J., Moran-Santa Maria, M., Twal, W.O., Shaftman, S., DeSantis, S.M., McRae-Clark, A.L., Brady, K.T. (2013). Association of elevated cytokines with childhood adversity in a sample of healthy adults. Journal of Psychiatric Research, 47(5), 604—610. https://doi.org/10.1016/j.jpsychires.2013.01.008
- Li, Y.F., Langholz, B., Salam, M.T., Gilliland, F.D. (2005). Maternal and grandmaternal smoking patterns are associated with early childhood asthma. Chest, 127(4), 1232—1241. https://doi.org/10.1378/chest.127.4.1232
- Lister, R., Ecker, J.R. (2009). Finding the fifth base: Genome-wide sequencing of cytosine. Genome Research, 19, 959—966. https://doi.org/10.1101/gr.083451.108
- Lumey, L.H., Stein, A.D., Susser, E. (2011). Prenatal famine and adult health. Annual Review of Public Health, 32, 237—262. https://doi.org/10.1146/annurev-publhealth-031210-101230
- McLaughlin, K.A., Sheridan, M.A., Nelson, C.A. (2017). Neglect as a violation of species-expectant experience: neurodevelopmental consequences. Biological Psychiatry, 82(7), 462—471. https://doi.org/10.1016/j.biopsych.2017.02.1096
- Naumova, O.Y., Hein, S., Suderman, M., Barbot, B., Lee, M., Raefski, A. (2016). Epigenetic patterns modulate the connection between developmental dynamics of parenting and offspring psychosocial adjustment. Child Development, 87(1), 98—110. https://doi.org/10.1111/cdev.12485
- Naumova, O.Y., Rychkov, S.Y., Kornilov, S.A., Odintsova, V.V., Anikina, V., Solodunova, M.Y., Grigorenko, E.L. (2019). Effects of early social deprivation on epigenetic statuses and adaptive behavior of young children: a study based on a cohort of institutionalized infants and toddlers. PLoS ONE, 14(3), Article e0214285. https://doi.org/10.1371/journal.pone.0214285
- Neuman, Å., Hohmann, C., Orsini, N., Pershagen, G., Eller, E., Kjaer, H.F., Gehring, U., Granell, R., Henderson, J., Heinrich, J., Lau, S., Nieuwenhuijsen, M., Sunyer, J., Tischer, C., Torrent, M., Wahn, U., Wijga, A.H., Wickman, M., Keil, T., Bergström, A., … ENRIECO Consortium. (2012). Maternal smoking in pregnancy and asthma in preschool children: a pooled analysis of eight birth cohorts. American Journal of Respiratory and Critical Care Medicine, 186(10), 1037—1043. https://doi.org/10.1164/rccm.201203-0501OC
- Nikolaeva, E.I., Dydenkova, E.A., Mayorova, L.A., Portnova, G.V. (2024). The impact of daily affective touch on cortisol levels in institutionalized and fostered children. Physiology & Behavior, 277, Article 114479. https://doi.org/10.1016/j.physbeh.2024.114479
- Non, A.L., Hollister, B.M., Humphreys, K.L., Childebayeva, A., Esteves, K., Zeanah, C.H., Fox, N.A., Nelson, C.A., Drury, S.S. (2016). DNA methylation at stress-related genes is associated with exposure to early life institutionalization. American Journal of Physical Anthropology, 161(1), 84—93. https://doi.org/10.1111/cdev.12485
- Pembrey, M.E., Bygren, L.O., Kaati, G., Edvinsson, S., Northstone, K., Sjöström, M., Golding, J. ALSPAC Study Team. (2006). Sex-specific, male-line transgenerational responses in humans. European Journal of Human Genetics, 14(2), 159—166. https://doi.org/10.1038/sj.ejhg.5201538
- Reynolds, R.M., Jacobsen, G.H., Drake, A.J. (2013). What is the evidence in humans that DNA methylation changes link events in utero and later life disease? Clinical Endocrinology, 78(6), 814—822. https://doi.org/10.1111/cen.12164
- Ross, S.A. (2003). Diet and DNA methylation interactions in cancer prevention. Annals of the New York Academy of Sciences, 983(1), 197—207. https://doi.org/10.1111/j.1749-6632.2003.tb05974.x
- Rothstein, M.A., Cai, Y., Marchant, G.E. (2009). The ghost in our genes: legal and ethical implications of epigenetics. Health Matrix (Cleveland, Ohio : 1991), 19(1), 1—62. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC3034450/ (viewed: 15.09.2025).
- Tobi, E.W., Slieker, R.C., Luijk, R., Dekkers, K.F., Stein, A.D., Xu, K.M., Biobank-based Integrative Omics Studies Consortium, Slagboom, P.E., van Zwet, E.W., Lumey, L.H., Heijmans, B.T. (2018). DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Science Advances, 4(1), Article eaao4364. https://doi.org/10.1126/sciadv.aao4364
- Urdinguio, R.G., Torró, M.I., Bayón, G.F., Álvarez-Pitti, J., Fernández, A.F., Redon, P., Fraga, M.F., Lurbe, E. (2016). Longitudinal study of DNA methylation during the first 5 years of life. Journal of Translational Medicine, 14(1), Article 160. https://doi.org/10.1186/s12967-016-0913-x
- Vinkers, C.H., Kalafateli, A.L., Rutten, B.P.F., Kas, M.J., Kaminsky, Z., Turner, J.D., Boks, M.P. (2015). Traumatic stress and human DNA methylation: a critical review. Epigenomics, 7(4), 593—608. https://doi.org/10.2217/epi.15.11
- Walker, E.E., Cicchetti, D. (2003). Neurodevelopmental mechanisms in psychopathology. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511546365
Information About the Authors
Contribution of the authors
Elena I. Nikolaeva — conceptualization, study design; supervision of the research process, interpretation of the review findings, and writing of the manuscript.
Eva A. Dydenkova — thematic organization and critical analysis of scientific literature; development of the methodological framework for thematic synthesis.
Galina V. Semya — annotation; editing of the text of the manuscript, article design and preparation for publication.
All the authors participated in the search for scientific sources, their analysis, discussion of the results and agreed on the final text of the manuscript.
Conflict of interest
The authors declare no conflict of interest.
Metrics
Web Views
Whole time: 196
Previous month: 133
Current month: 63
PDF Downloads
Whole time: 20
Previous month: 14
Current month: 6
Total
Whole time: 216
Previous month: 147
Current month: 69