Моделирование заболеваний мозга человека в экспериментах на грызунах (краткий обзор)

1736

Аннотация

В обзоре дается краткая сводка успехов и трудностей в создании и использовании биологических моделей заболеваний мозга человека, которая относится к важным проблемам прикладной нейробиологии. В обзоре упоминаются и попытки теоретического осмысления относительной роли генотипа, влияний среды и их динамического взаимодействия (концепция LEARN). Рассматриваются примеры разработанных генетических моделей болезней человека (болезнь Альцгеймера, синдром Дауна, аутизм и др.). Уделено внимание сложной проблеме «нормы» и «патологии» при создании моделей тревожных расстройств человека, а также важности учета и глубокого понимания видоспецифических особенностей поведения животных видов, используемых в качестве биологических моделей такого рода.

Общая информация

Ключевые слова: нейрогенетика, генетика поведения, генетические модели, заболевания мозга человека, модели тревожных расстройств, взаимодействие генотип-среда

Рубрика издания: Нейронауки

DOI: https://doi.org/10.17759/jmfp.2016050402

Для цитаты: Перепелкина О.В., Полетаева И.И., Тарасова А.Ю. Моделирование заболеваний мозга человека в экспериментах на грызунах (краткий обзор) [Электронный ресурс] // Современная зарубежная психология. 2016. Том 5. № 4. С. 13–23. DOI: 10.17759/jmfp.2016050402

Литература

  1. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition / Kim H. [et al.] // Disease Models & Mechanisms. 2016. Vol. 9. P. 839–884. doi: 10.1242/dmm.025668
  2. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene / Shu W. [et al] // Proceedings of the National Academy of Sciences of the United States of America. 2005. Vol. 102. № 27. P. 9643–9648. doi: 10.1073/pnas.0503739102
  3. Autism-like behavioral phenotypes in BTBR T+tf/J mice / McFarlane H.G. [et al.] // Genes, Brain and Behavior. 2007. Vol. 7. № 2. P. 152–163. doi: 10.1111/j.1601-183X.2007.00330.x
  4. Behavioral profiles of genetically selected aggressive and nonaggressive male wild house mice in two anxiety tests / Hogg S. [et al.] // Behavior Genetics. 2000. Vol. 30. № 6. P. 439–446. doi: 10.1023/A:1010246717180
  5. Belzung C., Le Guisquet A.M., Crestani F. Flumazenil induces benzodiazepine partial agonist-like effects in BALB/c but not C57BL/6 mice // Psychopharmacology. 2000. Vol. 148. № 1. P. 24–32. doi: 10.1007/s002130050021
  6. Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer's disease // Pharmacol Ther. 2014. Vol. 142. № 2. P. 244–257. doi: 10.1016/j.pharmthera.2013.12.009
  7. Blanchard R.J., Blanchard D.C. Bringing natural behaviors into the laboratory: a tribute to Paul MacLean // Physiology & Behavior. 2003. Vol. 79. № 3. P. 515–524. doi: 10.1016/S0031-9384(03)00157-4
  8. Bouwknecht J.A., Paylor R. Behavioral and physiological mouse assays for anxiety: a survey in nine mouse strains // Behavioural Brain Research. 2002. Vol. 136. № 2. P. 489–501. doi: 10.1016/S0166-4328(02)00200-0
  9. Bouwknecht J.A., Paylor R. Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-like behaviour in rodents // Behavioural Pharmacology. 2008. Vol. 19. № 5–6. P. 385–402. doi: 10.1097/FBP.0b013e32830c3658
  10. Chadman K.K. Fluoxetine but not risperidone increases sociability in the BTBR mouse model Pharmacology // Pharmacology Biochemistry and Behavior. 2011. Vol. 97. № 3. P. 586–594. doi: 10.1016/j.pbb.2010.09.012
  11. Cognitive performance in rats differing in their inborn anxiety / Ohl F. [et al.] // Behavioral Neuroscience. 2002. Vol. 116. № 3. P. 464–471. doi: 10.1037/0735-7044.116.3.464
  12. Connecting anxiety and genomic copy number variation: a genome-wide analysis in CD-1 Mice / Brenndörfer J. [et al.] // PLoS One. 2015. Vol. 10. № 5. doi: 10.1371/journal.pone.0128465
  13. Crawley J.N., Davis L.G. Baseline exploratory activity predicts anxiolytic responsiveness to diazepam in five mouse strains // Brain Research Bulletin. 1982. Vol. 8. № 6. P. 609–612. doi: 10.1016/0361-9230(82)90087-9
  14. Different data from different labs: lessons from studies of gene-environment interaction / Wahlsten D. [et al.] // Journal of neurobiology. 2003. Vol. 54. № 1. P. 283–311. doi: 10.1002/neu.10173
  15. Display of individuality in avoidance behavior and risk assessment of inbred mice / Hager T. [et al.] // Frontiers in Behavioral Neuroscience. 2014. Vol. 8. P. 1–12. doi: 10.3389/fnbeh.2014.00314
  16. DNA methylation in the developing hippocampus and amygdala of anxiety-prone versus risk-taking rats / Simmons R.K. [et al.] // Developmental neuroscience. 2012. Vol. 34. № 1. P. 58–67. doi: 10.1159/000336641
  17. Enard W. FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution // Current Opinion in Neurobiology. 2011. Vol. 21. № 3. P. 415–424. doi: 10.1016/j.conb.2011.04.008
  18. Ennaceur A., Chazot P.L. Preclinical animal anxiety research – flaws and prejudices // Pharmacology Research & Perspectives. 2016. Vol. 4. № 2. P. 1–37. doi: 10.1002/prp2.223
  19. Ennaceur A. Tests of unconditioned anxiety – pitfalls and disappointments // Physiology & Behavior. 2014. Vol. 135. P. 55–71 doi: 10.1016/j.physbeh.2014.05.032
  20. Following the genes: a framework for animal modeling of psychiatric disorders / Mitchell K.J. [et al.] // BMC Biology. 2011. Vol. 9. № 76. P. 1–13. doi: 10.1186/1741-7007-9-76
  21. Forebrain-specific loss of BMPRII in mice reduces anxiety and increases object exploration / McBrayer Z.L. [et al.] // PLoS One. 2015. Vol. 10. № 10. P. 1–19. doi: 10.1371/journal.pone.0139860
  22. Guillot P.V., Chapouthier G. Intermale aggression and dark/light preference in ten inbred mouse strains // Behavioural Brain Research. 1996. Vol. 77. № 1–2. P. 211–213. doi: 10.1016/0166-4328(95)00163-8
  23. Haploinsufficiency of Gtf2i, a gene deleted in Williams Syndrome, leads to increases in social interactions / Sakurai T. [et al.] // Autism Research. 2011. Vol. 4. P. 28–39. doi: 10.1002/aur.169
  24. Infralimbic Neurotrophin-3 Infusion Rescues Fear Extinction Impairment in a Mouse Model of Pathological Fear / D'Amico D. [et al.] // Neuropsychopharmacology. 2017. Vol. 42. № 2. P. 462–472. doi: 10.1038/npp.2016.154
  25. Insel T.R. From animal models to model animals // Biol Psychiatry. 2007. Vol. 62. № 12. P. 1337–1339. doi: 10.1016/j.biopsych.2007.10.001
  26. Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviors in one single trial / Ramos A. [et al.] // Behavioural Brain Research. 2008. Vol. 193. № 2. P. 277–288. doi: 10.1016/j.bbr.2008.06.007
  27. Isaksen T.J., Lykke-Hartmann K. Insights into the Pathology of the α2-Na(+)/K(+)-ATPase in Neurological Disorders; Lessons from Animal Models // Frontiers in physiology. 2016. Vol. 7. № 161. P. 44–52. doi: 10.3389/fphys.2016.00161
  28. Jacobson L.H., Cryan J.F. Genetic approaches to modeling anxiety in animals // Behavioral Neurobiology of Anxiety and Its Treatment. Springer Berlin Heidelberg. 2009. Vol. 2. P. 161–201. doi: 10.1007/7854_2009_31
  29. Lahiri D.K., Maloney B., Zawia N.H. The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases // Molecular psychiatry. 2009. Vol. 14. P. 992–1003. doi: 10.1038/mp.2009.82
  30. Lalonde R., Strazielle C. Relations between open-field, elevated plus-maze, and emergence tests in C57BL/6J and BALB/c mice injected with GABA- and 5HT-anxiolytic agents // Fundamental & clinical pharmacology. 2010. Vol. 24. № 3. P. 365–376. doi: 10.1111/j.1472-8206.2009.00772.x
  31. Landgraf R., Wigger A. High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety // Behavior Genetics. 2002. Vol. 32. № 5. P. 301–314. doi: 10.1023/A:1020258104318
  32. Long-term individual housing in C57BL/6J and DBA/2 mice: assessment of behavioral consequences / Voikar V. [et al.] // Genes, Brain and Behavior. 2005. Vol. 4. № 4. P. 240–252. doi: 10.1111/j.1601-183X.2004.00106.x
  33. Löscher W. Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies / Epilepsy Research. 2016. Vol. 126. P. 157–184. doi: 10.1016/j.eplepsyres.2016.05.016
  34. Mainstreaming Mice / Babineau B.A., [et al.] // Neuropsychopharmacology. 2012. Vol. 37. № 1. P. 300–301; doi: 10.1038/npp.2011.168
  35. Martínez-Cué C., Delatour B., Potier M.C. Treating enhanced GABAergic inhibition in Down syndrome: use of GABA α5-selective inverse agonists // Neuroscience & Biobehavioral Reviews. 2014. Vol. 46. № 2. P. 218–227. doi: 10.1016/j.neubiorev.2013.12.008
  36. Matzel L.D., Kolata S. Selective attention, working memory, and animal intelligence // Neuroscience & Biobehavioral Reviews. 2010. Vol. 34. № 1. P. 23–30 doi: 10.1016/j.neubiorev.2009.07.002
  37. McEwen B.S., Gray J.D., Nasca C. 60 years of neuroendocrinology: Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation // Journal of endocrinology. 2015. Vol. 226. № 2. P. T67–T83. doi: 10.1530/JOE-15-0121
  38. McKinney P. Teaching model for rhinoplasty // Plastic & Reconstructive Surgery. 1984. Vol. 74. № 6. P. 846–846.
  39. Mo C., Renoir T., Hannan A.J. What's wrong with my mouse cage? Methodological considerations for modeling lifestyle factors and gene-environment interactions in mice // Journal of Neuroscience Methods. 2016. Vol. 265. P. 99–108. doi: 10.1016/j.jneumeth.2015.08.008
  40. Möhler H. Cognitive enhancement by pharmacological and behavioral interventions: the murine Down syndrome model // Biochemical Pharmacology. 2012. Vol. 84. № 8. P. 994–999. doi: 10.1016/j.bcp.2012.06.028
  41. Multidimensional structure of anxiety-related behavior in early-weaned rats / Kanari K., [et al.] // Behavioural Brain Research. 2005. Vol. 156. № 1. P. 45–52. doi: 10.1016/j.bbr.2004.05.008
  42. Protein Biomarkers in a Mouse Model of Extremes in Trait Anxiety [Электронный ресурс] / Ditzen C. [et al.] // Molecular & Cellular Proteomics. 2006. Vol. 5. № 10. P. 1914–1920. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.2694&rep=rep1&type=pdf (дата обращения: 26.12.2016).
  43. Qureshi I.A., Mehler M.F. Epigenetics and therapeutic targets mediating neuroprotection // Brain Research. 2015. Vol. 1628. Part B. P. 265–272 doi: 10.1016/j.brainres.2015.07.034
  44. Reducing GABAergicinhibition restores cognitive functions in a mouse model of Down syndrome / Potier M.C. [et al.] // CNS Neurol Disord Drug Targets. 2014. Vol. 13. № 1. P. 8–15. doi: 10.2174/18715273113126660185
  45. Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence / Laviola G. [et al.] // Neuroscience and Biobehavioral Reviews. 2003. Vol. 27. № 1–2. P. 19–31. doi: 10.1016/S0149-7634(03)00006-X
  46. Rodgers R.J. Animal models of 'anxiety': where next? [Электронный ресурс] // Behavioural pharmacology. 1997. Vol. 8. № 6–7. P. 477–496. URL: http://journals.lww.com/behaviouralpharm/Abstract/1997/11000/Animal_models_of__anxiety___where_next_.3.aspx (дата обращения: 26.12.2016).
  47. Scattoni M.L., Ricceri L., Crawley J.N. Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters // Genes, Brain and Behavior. 2011. Vol. 10. № 1. P. 44–56. doi: 10.1111/j.1601-183X.2010.00623.x
  48. Short-term treatment with the GABAA receptor antagonist pentylenetetrazole produces a sustained pro-cognitive benefit in a mouse model of Down's syndrome / D. Colas [et al.] // British journal of pharmacology. 2013. Vol. 169. № 5. P. 963–973. doi: 10.1111/bph.12169
  49. The brain on stress: Insight from studies using the Visible Burrow System / McEwen B.S. [et al.] // Physiology & Behavior. 2015. Vol. 146. P. 47–56. doi: 10.1016/j.physbeh.2015.04.015
  50. The Krushinsky-Molodkina rat strain: The study of audiogenic epilepsy for 65years / Poletaeva I.I. [et al.] // Epilepsy & Behavior. 2015. doi: 10.1016/j.yebeh.2015.04.072
  51. Vorhees C.V., Makris S.L. Assessment of learning, memory, and attention in developmental neurotoxicity regulatory studies: synthesis, commentary, and recommendations // Neurotoxicology and Teratology. 2015. Vol. 52. Part A. P. 109–115. doi: 10.1016/j.ntt.2015.10.004
  52. Yee B.K., Singer P. A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia // Cell and Tissue Research. 2013. Vol. 354. № 1. P. 221–246. doi: 10.1007/s00441-013-1611-0

Информация об авторах

Перепелкина Ольга Викторовна, кандидат биологических наук, Ведущий научный сотрудник, кафедра высшей нервной деятельности, Биологический факультет, Московский государственный университет имени М.В. Ломоносова, Москва, Россия, e-mail: o_perepel73@mail.ru

Полетаева Инга Игоревна, доктор биологических наук, Старший научный сотрудник, ведущий научный сотрудник, кафедра высшей нервной деятельности, Биологический факультет, Московский государственный университет имени М.В. Ломоносова, Москва, Россия, e-mail: ingapoletaeva@mail.ru

Тарасова Александра Юрьевна, аспирант, кафедра высшей нервной деятельности, Биологический факультет, Московский государственный университет имени М.В. Ломоносова, Москва, Россия, e-mail: odrima@yandex.ru

Метрики

Просмотров

Всего: 1542
В прошлом месяце: 3
В текущем месяце: 5

Скачиваний

Всего: 1736
В прошлом месяце: 3
В текущем месяце: 5