ВВЕДЕНИЕ
Вычислительная психиатрия (ВП) — это стремительно развивающаяся область, для которой в литературе можно найти разные определения. Авторы данного обзора решили придерживаться определения, предложенного Montague и соавт., которые рассматривают ВП как междисциплинарную область знаний, использующую математические модели и вычислительные алгоритмы для понимания, прогнозирования и улучшения психического здоровья [1]. Эта широкая сфера охватывает моделирование нейробиологических процессов, применение машинного обучения для прогнозирования психических расстройств, а также разработку компьютерных диагностических инструментов, помогающих специалистам в клинической практике. Под собирательным понятием «аспекты вычислительной психиатрии» в настоящем обзоре подразумеваются любые исследования или области применения, в которых используются цифровые подходы в изучении психического здоровья.
В этом нарративном обзоре авторы поставили цель дать представление о современном состоянии ВП, обсудить ее серьезные проблемы, а также потенциальные возможности роста и развития этой области. Подчеркивая важную роль междисциплинарного сотрудничества и этическую безопасность, авторы надеются внести свой вклад в продолжающееся обсуждение ответственной разработки и применения компьютерных подходов в психиатрии.
Важно подчеркнуть, что преодоление этих проблем потребует существенных усилий, но это можно рассматривать как ключевую задачу. Потенциал вычислительной психиатрии в преобразовании психиатрической помощи вдохновляет на преодоление этих препятствий при сохранении понимания того, что содействие развитию этой области требует осторожности, терпеливой работы и должного учета этических последствий.
МЕТОДЫ
Авторы провели нарративный обзор опубликованной научной литературы, посвященной теме ВП. В обзоре были рассмотрены как теоретические работы, так и результаты исследований за период до мая 2023 г. включительно. Для обеспечения всестороннего обзора поиск литературы проводили в базах данных PubMed и eLibrary, а также в PsycINFO и Google Scholar. Для поиска научной литературы использовали следующие ключевые слова: “computational psychiatry”, “digital psychiatry”, “digital mental health”, “computers in psychiatry”, “artificial intelligence in psychiatry”, “AI in psychiatry”, “machine learning in psychiatry” («вычислительная психиатрия», «цифровая психиатрия», «цифровое психическое здоровье», «компьютеры в психиатрии», «искусственный интеллект в психиатрии», «ИИ в психиатрии», «машинное обучение в психиатрии»).
Оценку статей авторы выполняли независимо, рассматривая публикации с учетом заранее определенных критериев включения и исключения. Любые разногласия между рецензентами разрешались путем обсуждения до достижения консенсуса. Статью считали отвечающей критериям включения, если она была посвящена аспектам ВП, и авторам был доступен полный текст статьи. Помимо статей также рассматривали книги, которые внесли значительный вклад в эту область знаний. Дополнительный поиск проводили по библиографическим спискам статей, включенных в анализ.
Для обобщения опубликованной информации по теоретическим и практическим аспектам ВП был использован описательный анализ. В общей сложности в настоящий обзор вошли 54 публикации, которые обеспечили создание полноценного представления о современном состоянии ВП.
РЕЗУЛЬТАТЫ
При исследовании области ВП авторы определили несколько ключевых тем, которые они встретили при изучении литературы. Эти темы включают определение и область применения ВП, связанные с ней проблемы и этические аспекты, роль междисциплинарного сотрудничества, признание и развитие этой области, ее применение при конкретных психических расстройствах и потенциальные будущие направления развития. Эти темы послужили структурной основой для представленного обсуждения литературы и помогли обозначить ключевые выводы, сделанные различными авторами. В последующих разделах приведено краткое изложение результатов по каждой теме; авторы стремились представить сбалансированный обзор современного состояния ВП.
Определение и область применения вычислительной психиатрии
Вычислительная психиатрия — это новая междисциплинарная область знаний, целью которой является интеграция компьютерного моделирования, эмпирических данных и теоретических открытий из различных областей, таких как психология, нейробиология, информатика и математика с целью лучшего понимания психических расстройств и механизмов, лежащих в основе их развития [1, 2]. Основной целью этой области знаний является разработка количественных моделей, которые могут связать нейробиологические процессы, когнитивные функции и клинические симптомы для повышения точности диагностики, определения новых терапевтических целей и прогнозирования индивидуального ответа на лечение [3, 4].
Для достижения этих целей научные работники в области ВП используют различные подходы, включая обучение с подкреплением [5], Байесовский подход [6], теорию динамических систем, теорию информации [7, 8], а также крупномасштабный анализ данных и сетевое моделирование [9, 10]. Эти подходы помогают в исследовании сложной и меняющейся природы психических расстройств, дисфункций в процессах обучения и принятия решений, а также взаимодействия между различными областями головного мозга и генетическими факторами/факторами окружающей среды.
Ключевой задачей ВП является разработка вычислительных моделей, которые эффективно воспроизводят сложность психических расстройств, а также учитывают индивидуальные различия в симптоматике и ответе на лечение [11]. Этот процесс можно представить в виде обобщенной схемы, которая включает такие этапы, как сбор данных, предварительная обработка, моделирование, тестирование, интерпретация и учет этических аспектов. Подробная иллюстрация этого процесса представлена на рис. 1.
Рисунок 1. Обобщенная схема разработки вычислительной модели в психиатрии: обзор.
Примечание: Иллюстрация создана с помощью нейросети Midjourney, Creative Commons Noncommercial 4.0 Attribution International (СС 4.0.)
Интеграция различных вычислительных подходов может позволить исследователям разрабатывать более сложные модели и проверять специфические гипотезы относительно механизмов, лежащих в основе психических расстройств [12]. Более того, ВП использует достижения машинного обучения и искусственного интеллекта (ИИ), что дает возможность задействовать новые методы анализа и интерпретировать сложные психиатрические данные, а также открывает перспективные возможности для персонализированного лечения [13]. Применение вычислительных подходов к данным исследований по нейровизуализации еще больше расширяет понимание нейронной основы различных психических расстройств [14].
Успех ВП в конечном итоге зависит от тесного сотрудничества специалистов в области теоретической информатики, нейробиологии и клиницистов, а также от разработки строгих методов валидации и оценки моделей [15]. ВП предоставляет количественную основу для понимания психических расстройств и помогает преодолеть разрыв между данными клинических наблюдений и нейробиологическими механизмами, в конечном итоге способствуя разработке более таргетных и эффективных вмешательств [2, 16].
Междисциплинарное сотрудничество
Междисциплинарное сотрудничество является краеугольным камнем ВП, поскольку оно объединяет достижения из различных областей, таких как психология, нейробиология, информатика и математика, для лучшего понимания психических расстройств и механизмов, лежащих в основе их развития [1, 2]. На пути этого сотрудничества встречается ряд проблем. Например, могут возникнуть затруднения при интеграции различных методологий и теоретических основ, что требует глубокого понимания нескольких дисциплин [16]. Однако потенциальные преимущества такой совместной работы значительны: она позволяет разрабатывать более полные модели психических расстройств, что может привести к созданию оптимальных диагностических инструментов и разработке лучших стратегий лечения [17–19].
Более того, междисциплинарная работа выходит за рамки научного сообщества. Она также охватывает образование и подготовку специалистов в области психического здоровья. Это подразумевает не только обучение необходимым компьютерным навыкам, но и понимание потенциальных преимуществ и ограничений цифровых стратегий [20–22].
Сущность междисциплинарной работы в ВП также отражается в исследовательской практике в этой области, особенно в контексте технологий дисциплин, связанных с изучением больших массивов сложно организованных данных — «омиксных» технологий. К ним относятся геномика, а также новые области, такие как липидомика, протеомика и транскриптомика. Например, генетика полигенных заболеваний является одной из моделей «омиксных» технологий, в которой на первый план выходят такие подходы, как полигенные оценки риска. Применение этих мультимодальных подходов в сочетании с анализом больших массивов данных является основным направлением компьютерных исследований, которые вносят значительный вклад в моделирование психических заболеваний [23–26]. Этот интегративный подход необходим для развития ВП и ее применения в клинической практике [27–29].
Проблемы и этические соображения
Несмотря на многообещающий потенциал ВП, данная область сталкивается с рядом проблем, затрудняющих ее развитие. Одним из основных препятствий является разработка и интерпретация вычислительных моделей, которые с высокой точностью воспроизводят психические расстройства, учитывая индивидуальные различия в симптоматике и ответе на лечение [11]. Интеграция различных вычислительных подходов может привести к созданию более сложных моделей, однако вызывает трудности при двойной проверке, верификации в независимых исследованиях, сравнении в многоцентровых исследованиях и между популяциями, что может привести к неточным или искаженным выводам [30].
Кроме того, математические модели, особенно те, которые используют большие массивы данных и машинное обучение, рассчитывают значения вероятности, такие как степени риска [31]. Неправильное понимание этих вероятностей может привести к общественному осуждению, особенно в случае утечки личных данных; например, когда риск приравнивается к диагнозу, что может привести к стигматизации [32].
Сложность этих моделей также требует разработки строгих руководств и стандартов, что становится ключевым моментом в контексте ВП [33]. Необходимо также преодолеть предубеждения и опасения, связанные с вычислительными технологиями. Подчеркивание прозрачности модели и биологического правдоподобия может способствовать ее более широкому принятию и использованию специалистами [11, 12]. Решение этих проблем, включая этические аспекты, будет иметь определяющее значение для дальнейшего развития и успеха ВП в психиатрической помощи [28].
Признание и развитие вычислительной психиатрии
Вычислительная психиатрия, находящаяся на стыке нейробиологии, психиатрии и информатики, была признана важной областью научных знаний уже с середины 1980-х годов [1, 17]. Несмотря на сложности и проблемы, связанные с интеграцией вычислительных технологий в практическое здравоохранение, за последние несколько десятилетий в этой области наблюдался стремительный рост [34]. Развитие ВП во многом зависит от взаимодействия специалистов в области теоретической информатики, нейробиологов и практикующих врачей. Это междисциплинарное сотрудничество имеет важное значение для прогресса во всестороннем понимании психических расстройств, повышения точности диагностики, определения новых терапевтических целей и прогнозирования индивидуального ответа на лечение [1, 2, 16].
Потенциал компьютерных технологий в психиатрии получил признание после публикации новаторской работы Hedlund и соавт. (1985) [34]; эти авторы были одними из первых, кто рассмотрел и оценил как потенциал, так и проблемы, связанные с данной интеграцией. Несмотря на то, что прошло более десяти лет с момента первого упоминания ВП в публикациях [1], существенные изменения в этой области кажутся минимальными. Однако развитие ВП во многом зависит от синергичных усилий специалистов в области теоретической информатики, нейробиологов и практикующих врачей.
Недавняя интеграция машинного обучения и ИИ в вычислительную психиатрию дополнительно усилила ощущение потенциала и новизны и предложила беспрецедентные средства для анализа сложных психиатрических данных [13]. Однако как в литературе, так и в профессиональном сообществе до сих пор наблюдается очевидное непонимание этих технологий. В частности, сохраняются опасения по поводу использования компьютеров специалистами, в том числе использования современных технологий в психиатрическом образовании [21]. Несмотря на эти проблемы, возможности современных вычислительных технологий достигли такой стадии, когда их интеграция в психиатрическую практику не просто осуществима, но и крайне необходима.
Вычислительная психиатрия на практике: применение при конкретных психических расстройствах
Вычислительная психиатрия продемонстрировала значительный потенциал в моделировании и понимании различных психических расстройств. Применение вычислительных методов изучали в контексте шизофрении, синдрома дефицита внимания и гиперактивности, расстройств аутистического спектра, тревожных расстройств, обсессивно-компульсивного расстройства и расстройств, связанных с употреблением психоактивных веществ [35–41].
Применительно к шизофрении с помощью Байесовских принципов была смоделирована систематическая ошибка «поспешных выводов» — тенденция принимать решения на основе недостаточных доказательств [35]. Аналогичным образом была установлена связь между нарушением механизма прогнозирования вознаграждения при психозах с изменениями в черной субстанции/вентральной области покрышки [36]. В контексте негативных симптомов с помощью вычислительных моделей была исследована неспособность представить ожидаемую ценность вознаграждения за действия [37].
При расстройствах аутистического спектра теории предиктивного кодирования использовались для объяснения дефицита социальных навыков, наблюдаемых у лиц с данными расстройствами [42]. Теории ангедонии, ключевого симптома депрессии, были сопоставлены с моделями обучения с подкреплением [39].
При обсессивно-компульсивном расстройстве выявлены специфические лобно-стриарные функциональные системы (цепи), связанные с нарушением когнитивной гибкости и целенаправленного планирования [43]. С помощью вычислительных методов была смоделирована тенденция к привычному поведению, характерная для компульсивных расстройств [44].
При расстройствах, связанных с употреблением психоактивных веществ, изучалась компьютерная анатомия зависимости с акцентом на роль неопределенности и ожидания при тревоге [45]. Применение ВП при этих расстройствах не только обеспечило более глубокое понимание их основных механизмов, но и открыло новые возможности для их диагностики и лечения [46, 47].
Однако также важно отметить, что, хотя эти области применения предоставили ценную информацию, они также подчеркивают сложность и неоднородность психических расстройств. Каждое расстройство представляет собой уникальные вызовы, требующие индивидуальных вычислительных подходов.
Будущие направления и потенциал
Вычислительная психиатрия представляет собой быстро развивающуюся область с огромным потенциалом для будущего роста. Интеграция вычислительных технологий в психиатрическую практику на сегодняшний день не просто возможна, но и крайне необходима [48]. Разработка все более продуманных и тонко организованных математических моделей и компьютерного моделирования будет способствовать углублению нашего понимания психических расстройств [49, 50].
Ожидается, что использование машинного обучения и больших массивов данных в психиатрии произведет революцию в методах прогнозирования и лечения психических расстройств [51]. Например, сетевой анализ предполагает интегративный подход к пониманию структуры психопатологии [52].
Данная область неизбежно сталкивается с проблемами, связанными со стигматизацией и социальной адаптацией, особенно среди пациентов с первым эпизодом шизофрении [20]. Например, использование на практике искусственных «компаньонов» у пожилых людей с когнитивными нарушениями может вызывать некоторые опасения.
Будущее ВП также связано с междисциплинарным сотрудничеством. Интеграция нейробиологии, психиатрии и информатики будет иметь решающее значение для развития этой области [34, 53]. Кроме того, чтобы обеспечить успешную интеграцию вычислительных методов в клиническую практику, необходимо удовлетворить образовательные потребности специалистов в области психического здоровья [21–23]. Наконец, нельзя игнорировать потенциал ВП в генетических исследованиях. Идентификация генетических локусов риска, связанных с влиянием на основные психические расстройства, представляет собой значительный прорыв в этой области [54].
В заключении следует отметить, что, хотя будущее ВП выглядит многообещающим, оно также сопряжено с определенными вызовами.
ОБСУЖДЕНИЕ
Обзор литературы, посвященной применению вычислительных технологий в психиатрии, позволил определить очевидное препятствие на пути их интеграции в практическое здравоохранение. Несмотря на то, что прошло более десяти лет с момента первого упоминания ВП в публикациях [1], существенные изменения в этой области по-прежнему являются минимальными. Тем не менее, развитие ВП во многом зависит от синергичных усилий специалистов в области теоретической информатики, нейробиологов и практикующих врачей. Это междисциплинарное сотрудничество имеет важное значение для прогресса во всестороннем понимании психических расстройств, повышении точности диагностики, а также определении новых терапевтических целей и прогнозирования индивидуального ответа на лечение. Потенциал компьютерных технологий в психиатрии получил признание после публикации новаторской работы Hedlund и соавт. (1985) [34]; эти авторы были одними из первых, кто рассмотрел и оценил как потенциал, так и проблемы, связанные с данной интеграцией.
Размышляя о развитии ВП, важно признать революционный сдвиг, который произошел в этой области. Появление передовых вычислительных инструментов и растущее признание роли технологий в исследованиях значительно расширили возможности ВП. Этот положительный сдвиг не только позволил исследователям пробовать использовать новые возможности, но и пересмотреть существующие концепции с новой точки зрения. Несмотря на прогресс, достигнутый за 30-летний период как в литературе, так и в профессиональном сообществе, до сих пор наблюдается очевидное неверное понимание этих технологий. В частности, сохраняется настороженность в вопросе использования компьютеров специалистами. Недавняя интеграция машинного обучения и ИИ в ВП дополнительно усилила это ощущение потенциала и новизны и предложила беспрецедентные средства для анализа сложных психиатрических данных. Однако в настоящее время эта область научных знаний сталкивается с ограничениями, мешающими ее развитию. Возвращаясь к ключевым моментам, обсуждаемым в разделе результатов, становится очевидным, что область ВП является междисциплинарной по определению; кроме того, следует отметить признание и развитие данной области, а также возможность ее применения для конкретных психических расстройств. Каждый из этих аспектов представляет собой уникальные проблемы, но также позволяет представить потенциальные будущие направления развития этой области. Обсуждение этих ключевых моментов в свете данных опубликованной литературы не только позволяет получить представление о современном состоянии ВП, но и закладывает основу для будущих исследований.
Вычислительная психиатрия имеет возможность преобразовать психиатрическую помощь, закладывая основу для персонализированных подходов к лечению. Эта область психиатрии, к сожалению, связана со стигматизацией вследствие ограниченного понимания этиологии психических расстройств, а также неверной интерпретации результатов использования математических моделей. Например, могут быть неправильно истолкованы результаты применения моделей, рассчитывающих значения вероятности, такие как степени риска. В случае утечки персональных данных или неправильном понимании сути рисков и вероятностей, риск возникновения психического расстройства может быть приравнен к установленному диагнозу, что может привести к дальнейшей стигматизации [30–32, 55]. Отсутствие всеобъемлющих знаний является одним из факторов, подпитывающих предубеждения. Решая эти проблемы, вычислительная психиатрия стремится построить более сложные модели психических расстройств [53]. Этот процесс требует интеграции множества источников данных, включая данные нейровизуализационных исследований [48], генетических анализов [54] и поведенческих исследований [1], а также требует изучения этих данных на разных уровнях анализа: от молекулярного до клеточного и системного уровней [23]. Этот мультимодальный и многоуровневый подход позволяет исследователям понять сложные взаимодействия между генетическими [24], экологическими [25] и нейробиологическими факторами [26], которые способствуют возникновению и прогрессированию психических расстройств. Важно отметить, что этот подход также облегчает идентификацию биомаркеров и эндофенотипов [27], которые могут служить важными инструментами для ранней диагностики, прогноза и применения целевых вмешательств.
Обеспечение валидности и надежности вычислительных моделей имеет решающее значение для их успешного применения в клинической практике. Следует подчеркнуть важность строгих методов валидации и оценки моделей, которые могут помочь определить точность и возможность генерализации использования этих моделей для различных групп пациентов. Для этого процесса жизненно важное значение имеет доступ к крупномасштабным высококачественным наборам данных, поскольку это позволяет исследователям тщательно тестировать и совершенствовать свои модели на основе реальных данных. Содействие обмену данными и ресурсами между исследователями может оптимизировать валидацию модели и повысить воспроизводимость ВП.
Применение вычислительных моделей при принятии клинических решений поднимает ряд этических проблем, которые требуют решения. К ним относятся потенциальная стигматизация или дискриминация определенных групп пациентов, нарушение конфиденциальности и неправомерное использование конфиденциальных данных пациентов. Крайне важно разработать этические руководящие принципы и стандарты наилучшей практики, чтобы гарантировать, что ВП соответствует самым высоким стандартам оказания помощи пациентам и конфиденциальности. Решение этих проблем является ключом к укреплению доверия между пациентами и врачами и будет содействовать ответственному развитию этой области.
В сфере вычислительных методов в психиатрии возникают три основные этические проблемы, касающиеся скрининга, диагностики, мониторинга заболеваний и рекомендаций по терапии и реабилитации. Во-первых, безопасность персональных данных пациентов, которая является важной проблемой, хотя и не уникальной для ВП, поскольку она распространяется на все цифровые рабочие процессы [30, 31]. Во-вторых, потенциальная стигматизация пациентов является общей проблемой во всей психиатрии, где вычислительные методы могут непреднамеренно укреплять стереотипы или заблуждения [32, 55]. Наконец, неправомерное использование конфиденциальной информации, тесно связанное с первой проблемой, требует принятия строгих мер по обеспечению конфиденциальности и целостности данных. Эти этические соображения требуют особого внимания и разработки руководств и стандартов наилучшей практики для содействия ответственному поведению при использовании методов ВП, а также защиты прав и благополучия пациентов.
Интеграция ВП в практическое здравоохранение требует специализированных программ обучения и подготовки специалистов. При этом следует отметить, что в некоторых странах психиатры до сих пор имеют предубеждения по поводу использования компьютеров специалистами данной области, в том числе использования современных технологий в обучении психиатров [23]. Между тем, все больше работ посвящено обсуждению использования ВП и цифровых методов в образовании психиатров [22, 56], и в них отмечаются как возможные преимущества этого подхода, так и ограничения, прежде всего этические. В то же время, исследования демонстрируют высокий уровень интереса и востребованности образования, включая научную подготовку в области психиатрии, у молодых психиатров [57], что может косвенно указывать на потенциальный успех целенаправленного использования образовательных программ по ВП именно в этой группе специалистов. Программы образования и профессиональной подготовки по ВП должны способствовать междисциплинарному сотрудничеству, гарантируя, что специалисты из различных областей могут эффективно общаться и понимать общий язык вычислительных моделей и инструментов. Особое внимание в ходе обучения врачей следует уделить пониманию границ применимости моделей на основе ИИ, интеграции этих инструментов в существующую практику с учетом мер безопасности данных и юридических аспектов [22]. Более того, крайне важно разработать образовательные программы для пациентов, чтобы устранить неверное представление о возможностях и ограничениях методов ВП. Этот комплексный образовательный подход не только устранит разрыв между специалистами в области теоретической информатики, нейробиологами, клиницистами и пациентами, но также проложит путь к более последовательному и эффективному применению ВП при оказании психиатрической помощи.
Более того, улучшение интерпретируемости моделей за счет их большей прозрачности и биологического правдоподобия может способствовать их широкому использованию и повышению клинической целесообразности. Этот акцент на прозрачности и правдоподобии не только улучшит понимание, но также может способствовать снижению стигматизации ВП и связанных с ней цифровых технологий.
Важно также признать ограничения и проблемы, с которыми сталкивается ВП, такие как необходимость в моделях с более высокой степенью биологического правдоподобия, возможность распространения результатов моделирования на различные группы пациентов и интеграция различных уровней анализа. В результате выявления этих ограничений обсуждение может наметить потенциальные будущие направления в этой области, такие как оптимизация существующих моделей, исследование новых вычислительных подходов и содействие междисциплинарному сотрудничеству. Решение этих проблем, включая этические аспекты, будет иметь определяющее значение для дальнейшего развития и успеха ВП в области психиатрической помощи.
Основное ограничение этой статьи заключается в ее формате нарративного, а не систематического обзора. Хотя этот подход позволяет получить широкий обзор темы ВП, следует отметить, что в результаты поиска, возможно, не были включены потенциально информативные статьи, которые могли бы обеспечить более полное понимание. Область охвата настоящего обзора может быть ограничена статьями, к которым получили доступ авторы. Широта спектра рассмотренной литературы также является важным достоинством статьи. Авторы надеются, что представленный обзор литературы вызовет интерес к ВП среди психиатров, что, в свою очередь, может привести к росту числа исследований в этой области, а также к готовности специалистов использовать методологию ВП в своей работе и клинической практике, что послужит примером практического применения научной работы, проведенной авторами.
ЗАКЛЮЧЕНИЕ
Область вычислительной психиатрии представляет собой быстро развивающуюся дисциплину, которая объединяет компьютерное моделирование, эмпирические данные и теоретические открытия из различных областей, таких как психология, нейробиология, информатика и математика. Ее задачи заключаются в лучшем понимании психических расстройств и механизмов, лежащих в основе их развития. Данный междисциплинарный подход привел к значительным достижениям в этой области, включая разработку новых диагностических инструментов и методов лечения. Однако широкая область применения ВП также сопряжена с рядом проблем. К ним относится необходимость в строгих этических принципах, регулирующих использование вычислительных моделей в психиатрических исследованиях и практике. Интеграция вычислительных методов в психиатрические исследования также требует высокой степени междисциплинарного сотрудничества, чего на практике порой сложно достичь.
Несмотря на эти проблемы, за последнее десятилетие произошел стремительный рост ВП и ее признание как области знаний. Доказательствами этого роста являются увеличивающееся количество публикаций по этой теме и расширение спектра психических расстройств, к которым могут быть применимы вычислительные методы. Применение этих методов к конкретным психическим расстройствам дало многообещающие результаты. Например, вычислительные модели использовали для лучшего понимания нейробиологических механизмов, лежащих в основе таких расстройств, как шизофрения и депрессия. Однако необходимы дальнейшие исследования, которые позволят в полной мере реализовать потенциал этих методов в клинической практике.
Заглядывая в будущее можно с уверенностью утверждать, что область ВП обладает значительным потенциалом для улучшения нашего понимания психических расстройств и повышения качества помощи, оказываемой пациентам. Однако реализация этого потенциала потребует постоянного междисциплинарного сотрудничества, строгого этического контроля и непрерывных исследований, направленных на оптимизацию и валидацию вычислительных моделей. Несмотря на то, что ВП является многообещающей областью знаний, она также характеризуется сложностью и требует решения множества проблем. Однако при условии продолжения исследований, сотрудничества и этического надзора, у этой области есть потенциал, способный значительно улучшить наше понимание психических расстройств и повысить качество помощи, оказываемой пациентам.
