Clinical Psychology and Special Education
2023. Vol. 12, no. 3, 1–29
doi:10.17759/cpse.2023120301
ISSN: 2304-0394 (online)
Dyslexia Diagnostics Based on Eye Movements and Artificial Intelligence Methods: A Review
Abstract
The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies have shown that eye movements in people with dyslexia may differ from those of people with normal reading abilities. Since 2015, studies have begun to appear in which the eye movements of observers with and without dyslexia were analyzed using various artificial intelligence methods. To date, there are a number of papers using both simple and more complex models (with neural networks and deep learning). This review discusses what accuracy of diagnosis has been achieved by researchers, for which groups of subjects and for which languages the current results have been shown, what types of algorithms have been used, and other practical aspects of conducting such diagnosis. According to the data analyzed, dyslexia diagnostics by eye movements and artificial intelligence methods is very promising and may have a significant impact on early diagnosing of reading problems.
General Information
Keywords: eye-tracking, eye movements, dyslexia, artificial intelligence, diagnostics methods
Journal rubric: Theoretical Research
Article type: scientific article
DOI: https://doi.org/10.17759/cpse.2023120301
Funding. This work is the result of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University). The work of M. Gracheva was partially supported within the state task of the IITP RAS (R&D registration number 122041100148-0 from March 13, 2023).
Received: 03.07.2023
Accepted:
For citation: Gracheva M.A., Shalileh S. Dyslexia Diagnostics Based on Eye Movements and Artificial Intelligence Methods: A Review [Elektronnyi resurs]. Klinicheskaia i spetsial'naia psikhologiia = Clinical Psychology and Special Education, 2023. Vol. 12, no. 3, pp. 1–29. DOI: 10.17759/cpse.2023120301. (In Russ., аbstr. in Engl.)
References
- Akhutina T.V., Inshakova O.B. Neiropsikhologicheskaya diagnostika, obsledovanie pis'ma i chteniya mladshikh shkol'nikov [Neuropsychological diagnostics, examination of writing and reading of younger students]. Moscow: V. Sekachev, 2016. 180 p. (In Russ.).
- Barabanshchikov V.A., Zhegallo A.V. Aitreking: Metody registratsii dvizhenii glaz v psikhologicheskikh issledovaniyakh i praktike [Eyetracking: Methods of eye movements registration in psychological research and practice]. Moscow: Kogito-Tsentr, 2014. 128 p. (In Russ.).
- Bezrukikh M.M. Trudnosti obucheniya v nachal'noi shkole. Prichiny, diagnostika, kompleksnaya pomoshch' [Learning difficulties in elementary school. Causes, diagnosis, complex help]. Moscow: Eksmo, 2009. 464 p. (In Russ.).
- Glozman Zh.M., Potanina A.YU., Soboleva A.E. Neiropsikhologicheskaya diagnostika v doshkol'nom vozraste [Neuropsychological diagnostics in preschool age], 2nd ed. Saint-Petersburg: Piter, 2008. 80 p. (In Russ.).
- Gol'dina S.M., Laurinavichyute A.K., Lopukhina A.A. et al. Osobennosti dvizhenii glaz pri chtenii u detei s disleksiei. Proceedings of the First National congress on cognitive research, artificial intelligence and neuroinformatics, Moscow, October 10–16, 2020. Vol. 1. Moscow: Natsional'nyi issledovatel'skii yadernyi universitet "MIFI", 2021, pp. 497–500. (In Russ.).
- Goodfellow I., Courville A., Bengio Y. Glubokoe obuchenie [Deep learning]. Moscow: DMK-Press, 2018. 652 p. (In Russ.).
- Dorofeeva S.V. Rechevoi defitsit i disleksiya: ehksperimental'noe issledovanie russkogovoryashchikh detei [Speech deficit and dyslexia: An experimental study of Russian-speaking children]. PhD (Psychology) Thesis. Moscow, 2020. 68 p. (In Russ.).
- Dorofeeva S.V., Reshetnikova V.A., Zyryanov A.S. et al. Batareya testov dlya vyyavleniya osobennostei fonologicheskoi obrabotki u russkoyazychnykh detei: dannye normy i gruppy detei s disleksiei [A battery of tests to identify the features of phonological processing in Russian-speaking children: data from the norm and the group of children with dyslexia]. In A.K. Krylov, V.D. Solov'ev (eds.), Proceedings of the 8th International conference on cognitive sciences, Svetlogorsk, October 18–21,2018. Moscow: Publ. of Institute of Psychology RAS, 2018, pp. 331–333. (In Russ.).
- Kornev A.N. Osnovy logopatologii detskogo vozrasta: klinicheskie i psikhologicheskie aspekty [Fundamentals of childhood speech therapy: Clinical and psychological aspects]. Saint-Petersburg: Rech', 2006. 380 p. (In Russ.).
- Kornev A.N., Oganov S.R., Gal'perina E.I. Formirovanie psikhofiziologicheskikh mekhanizmov ponimaniya pis'mennykh tekstov: registratsiya dvizhenii vzora pri chtenii u detei s disleksiei 9–11 i 12–13 let i zdorovykh sverstniko v [Development of the psychophysiological mechanisms in the comprehension of printed texts: eye tracking during text reading in healthy and dyslexic children aged 9–11 and 12–13 years]. Fiziologiya cheloveka= Human Physiology, 2019, vol. 45, no. 3, pp. 24–30. DOI: 10.1134/S0131164619030081 (In Russ., abstr. in Engl.).
- Lalaeva R.I. Narusheniya chteniya i puti ikh korrektsii u mladshikh shkol'nikov. Uchebnoe posobie [Reading disorders and ways of their correction in younger students. Tutorial]. Saint-Petersburg: Soyuz, 2002. 224 p. (In Russ.).
- Mirkin B.G. Vvedenie v analiz dannykh: uchebnik i praktikum [Introduction to data analysis: Textbook and practice]. Moscow: Yurait, 2023. 174 p. (In Russ.).
- Oganov S.R., Kornev A.N. Kak glaz skaniruet tekst pri chtenii: osobennosti fiksatsii na tekste u detei s disleksiei [How the eye scans the text when reading: features of fixations on the text in children with dyslexia]. Meditsina: teoriya i praktika = Medicine: theory and practice, 2019. Vol. 4, no 5, pp. 400–401. (In Russ.).
- Oganov S.R., Kornev A.N. Okulomotornye referenty deyatel'nosti chteniya u detei s disleksiei 9–11 let [Oculomotor referents of reading activity in children with dyslexia aged 9–11]. Fiziologiya cheloveka = Human Physiology, 2023. Vol. 49, no. 3, pp. 34–41. DOI: 10.31857/S0131164622600872 (In Russ., abstr. in Engl.).
- Rusetskaya M.N. Narusheniya chteniya u mladshikh shkol'nikov: Analiz rechevykh i zritel'nykh prichin [Reading disorders in younger students: Analysis of speech and visual causes]. Saint-Petersburg: KARO, 2007. 192 p. (In Russ.).
- Rychkova S.I., Likhvantseva V.G. Zritel'nye narusheniya u patsientov s disleksiei (obzor literatury) [Visual disorders in patients with dyslexia (literature review)]. The EYE GLAZ, 2022. Vol. 24, no. 2, pp. 47–54. DOI: 10.33791/2222-4408-2022-2-47-54. (In Russ., abstr. in Engl.).
- Yarbus A.L. Rol' dvizhenii glaz v protsesse zreniya [Eye movements in vision]. Moscow: Nauka, 1965. 166 p. (In Russ.).
- Albon E., Adi Y., Hyde C. The effectiveness and cost-effectiveness of coloured filters for reading disability: a systematic review. Birmingham: University of Birmingham, 2008. 121 p.
- Al-Edaily A., Al-Wabil A., Al-Ohali Y. Dyslexia Explorer: A screening system for learning difficulties in the Arabic language using eye tracking. In Proceedings of Human Factors in Computing and Informatics: First International Conference, SouthCHI 2013, Maribor, Slovenia, July 1-3, 2013, 2013, pp. 831–834. DOI: 10.1007/978-3-642-39062-3_63
- Asvestopoulou T., Manousaki V., Psistakis A. et al. DysLexML: Screening tool for dyslexia using machine learning. 2019. URL: http://arxiv.org/abs/1903.06274 (Accessed: 10.10.2023).
- Australian Dyslexia Association. Dyslexia in Australia. URL: https://dyslexiaassociation.org.au/dyslexia-in-australia/ (Accessed: 10.10.2023).
- Benfatto M.N., Seimyr G.Ö., Ygge J. et al. Screening for dyslexia using eye tracking during reading. PLoS ONE. 2016. Vol. 11, no. 12, article e165508. DOI: 10.1371/journal.pone.0165508
- Biscaldi M., Fischer B., Hartnegg K. Voluntary saccadic control in dyslexia. Perception. 2000. Vol. 29, no. 5, pp. 509–521. DOI: 10.1068/p2666a
- Bucci M.P., Brémond-Gignac D., Kapoula Z. Poor binocular coordination of saccades in dyslexic children. Graefe's Archive for Clinical and Experimental Ophthalmology. 2008. Vol. 246, pp. 417–428. DOI: 10.1007/s00417-007-0723-1
- Cortes C., Vapnik V. Support-vector networks. Machine Learning, 1995. Vol. 20, pp. 273–297. DOI: 10.1007%2FBF00994018
- Cover T., Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 1967. Vol. 13, no. 1, pp. 21–27. DOI: 10.1109/TIT.1967.1053964
- De Luca M., Borrelli M., Judica A. et al. Reading words and pseudowords: An eye movement study of developmental dyslexia. Brain and Language, 2002. Vol. 80, pp. 617–626. DOI: 10.1006/brln.2001.2637
- Deans P., O’Laughlin L., Brubaker B. et al. Use of eye movement tracking in the differential diagnosis of attention deficit hyperactivity disorder (ADHD) and reading disability. Psychology, 2010. Vol. 1 (4), pp. 238–246. DOI: 10.4236/psych.2010.14032
- El Hmimdi A.E., Ward L.M., Palpanas T. et al. Predicting dyslexia and reading speed in adolescents from eye movements in reading and non-reading tasks: A machine learning approach. Brain Sciences, 2021. Vol. 11 (10), article 1337. DOI: 10.3390/brainsci11101337
- Fischer B., Hartnegg K. Stability of gaze control in dyslexia. Strabismus, 2000. Vol. 8 (2), pp. 119–122. DOI: 10.1076/0927-3972(200006)821-2FT119
- Franzen L., Stark Z., Johnson A.P. Individuals with dyslexia use a different visual sampling strategy to read text. Scientific Reports, 2021. Vol. 11, article 6449. DOI: 10.1038/s41598-021-84945-9
- Henderson L.M., Taylor R.H., Barrett B. et al. Treating reading difficulties with colour. BMJ, 2014. Vol. 349, article g5160. DOI: 10.1136/bmj.g5160
- Ho T.K. Random decision forests. Proceedings of 3rd international Conference on Document Analysis and Recognition. IEEE, 1995. Vol. 1, pp. 278–282. DOI: 10.1109/ICDAR.1995.598994
- Høien T., Lundberg I. Dyslexia: From theory to intervention. Part of the Neuropsychology & Cognition book series, vol. 18. Springer, 2000. 230 p. DOI: 10.1007/978-94-017-1329-0
- Hyönä J., Olson R.K. Eye fixation patterns among dyslexic and normal readers: Effects of word length and word frequency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1995. Vol. 21 (6), pp. 1430–1440. DOI: 10.1037/0278-7393.21.6.1430
- Jainta S., Kapoula Z. Dyslexic children are confronted with unstable binocular fixation while reading. PLoS ONE, 2011. Vol. 6 (4), article e18694. DOI: 10.1371/journal.pone.0018694
- Jakovljević T., Janković M.M., Savić A.M. et al. The relation between physiological parameters and colour modifications in text background and overlay during reading in children with and without dyslexia. Brain sciences, 2021. Vol. 11 (5), article 539. DOI: 10.3390/brainsci11050539
- Jothi Prabha A., Bhargavi R. Eye movement feature set and predictive model for dyslexia: Feature set and predictive model for dyslexia. International Journal of Cognitive Informatics and Natural Intelligence, 2021. Vol. 15 (4), pp. 1–22. DOI: 10.4018/IJCINI.20211001.oa28
- Jothi Prabha A., Bhargavi R. Prediction of dyslexia from eye movements using machine learning. IETE Journal of Research, 2019. Vol. 68 (2), pp. 814–823. DOI: 03772063.2019.1622461
- Jothi Prabha A., Bhargavi R. Predictive model for dyslexia from fixations and saccadic eye movement events. Computer Methods and Programs in Biomedicine, 2020. Vol. 195, article 105538. DOI: 10.1016/j.cmpb.2020.105538
- Jothi Prabha A., Bhargavi R., Rani B.D. Prediction of dyslexia severity levels from fixation and saccadic eye movement using machine learning. Biomedical Signal Processing and Control, 2023. Vol. 79, article. 104094. DOI: 10.1016/j.bspc.2022.104094
- Kaisar S. Developmental dyslexia detection using machine learning techniques: A survey. ICT Express. 2020, vol. 6, no. 3, pp. 181–184. DOI: 10.1016/j.icte.2020.05.006
- Levy-Schoen A. Flexible and/or rigid control of oculomotor scanning behavior. In D.F. Fisher, R.A. Monty, J.W. Senders (eds.), Eye Movements: Cognition and Visual Perception. Hillsdale (NJ): Lawrence Erlbaum, 1981, pp. 299–314. DOI: 10.4324/9781315437415
- Lustig J. Identifying dyslectic gaze pattern. Comparison of methods for identifying dyslectic readers based on eye movement patterns. PhD Thesis. KTH royal institute of technology. 2016. URL: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A955646&dswid=-7506 (Accessed: 21.10.2023)
- McCullagh P. Generalized linear models. New York: Routledge. 1989. 532 p. DOI: 10.1201/9780203753736
- Nerušil B., Polec J., Škunda J. et al. Eye tracking based dyslexia detection using a holistic approach. Scientific Reports, 2021. Vol. 11, article 15687. DOI: 10.1038/s41598-021-95275-1
- Olson R.K., Kliegl R., Davidson B.J. Dyslexic and normal readers’ eye movements. Journal of Experimental Psychology: Human Perception and Performance, 1983. Vol. 9, no. 5, pp. 816–825. DOI: 10.1037/0096-1523.9.5.816
- Parshina O., Lopukhina A., Goldina S. et al. Global reading processes in children with high risk of dyslexia: A scanpath analysis. Annals of Dyslexia, 2022. Vol. 72, pp. 403–425. DOI: 10.1007/s11881-021-00251-z
- Pavlidis G.T. Do eye movements hold the key to dyslexia? Neuropsychologia, 1981. Vol. 19, no. 1, pp. 57–64. DOI: 10.1016/0028-3932(81)90044-0
- Peterson R.L., Pennington B.F. Developmental dyslexia. Lancet, 2012. Vol. 379, pp. 1997–2007. DOI: 10.1016/S0140-6736(12)60198-6
- Peterson R.L., Pennington B.F. Developmental dyslexia. Annual Review of Clinical Psychology, 2015. Vol. 11, pp. 283–307. DOI: 10.1146/annurev-clinpsy-032814-112842
- Pirozzolo F.J., Rayner K. The neural control of eye movements in acquired and developmental reading disorders. Studies in Neurolinguistics, 1979. Vol. 4, pp. 97–123. DOI: 10.1016/B978-0-12-746304-9.50009-4
- Raatikainen P., Hautala J., Loberg O. et al. Detection of developmental dyslexia with machine learning using eye movement data. Array, 2021. Vol. 12, article 100087. DOI: 10.1016/j.array.2021.100087
- Rayner K. Eye movements and the perceptual span in beginning and skilled readers. Journal of Experimental Child Psychology. 1986. Vol. 41 (2), pp. 211–236. DOI: 10.1016/0022-0965(86)90037-8
- Rayner K. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 1998. Vol. 124 (3), pp. 372–422. DOI: 10.1037/0033-2909.124.3.372
- Rayner K. Eye movements, perceptual span, and reading disability. Annals of Dyslexia. 1983. Vol. 33, pp. 163–173. DOI: 10.1007/BF02648003
- Rayner K. The role of eye movements in learning to read and reading disability. Remedial and Special Education. 1985. Vol. 6, pp. 53–60. DOI: 10.1177/074193258500600609
- Razuk M., Barela J.A., Peyre H. et al. Eye movements and postural control in dyslexic children performing different visual tasks. PLoS ONE, 2018. Vol. 13, article e0198001. DOI: 10.1371/journal.pone.0198001
- Rello L., Ballesteros M. Detecting readers with dyslexia using machine learning with eye tracking measures. In Proceedings of the 12th International Web for All Conference, 2015, article 16. DOI: 10.1145/2745555.2746644
- Smyrnakis I., Andreadakis V., Selimis V. et al. RADAR: A novel fast-screening method for reading difficulties with special focus on dyslexia. Plos ONE, 2017. Vol. 12 (8), article e0182597. DOI: 10.1371/journal.pone.0182597
- Tiadi A., Gérard C.L., Peyre H. et al. Immaturity of visual fixations in dyslexic children. Frontiers in Human Neuroscience, 2016. Vol. 10, article 58. DOI: 10.3389/fnhum.2016.00058
- Tinker M.A. Recent studies of eye movements in reading. Psychological Bulletin, 1958. Vol. 55, no. 4, pp. 215–231. DOI: 10.1037/h0041228
- Tinker M.A. The study of eye movements in reading. Psychological Bulletin, 1946. Vol. 43, no. 2, pp. 93–120. DOI: 10.1037/h0063378
- Usman O.L., Muniyandi R.C., Omar K. et al. Advance machine learning methods for dyslexia biomarker detection: A review of implementation details and challenges. IEEE Access, 2021. Vol. 9, pp. 36879–36897. DOI: 10.1109/ACCESS.2021.3062709
- Vajs I., Kovic V., Papic T. et al. Dyslexia detection in children using eye tracking data based on VGG16 network. In Proceedings of European Signal Processing Conference (EUSIPCO), 2022, pp. 1601–1605. DOI: 10.23919/EUSIPCO55093.2022.9909817
- Vajs I., Ković V., Papić T. et al. Spatiotemporal eye-tracking feature set for improved recognition of dyslexic reading patterns in children. Sensors, 2022. Vol. 22 (13), article 4900. DOI: 10.3390/s22134900
- Vajs I.A., Kvascev G.S., Papic T.M. et al. Eye-tracking image encoding: Autoencoders for the crossing of language boundaries in developmental dyslexia detection. IEEE Access, 2023. Vol. 11, pp. 3024–3033. DOI: 10.1109/ACCESS.2023.3234438
- Vajs I., Papić T., Ković V. et al. Accessible dyslexia detection with real-time reading feedback through robust interpretable eye-tracking features. Brain Sciences, 2023. Vol. 13 (3), article 405. DOI: 10.3390/brainsci13030405
- Vellutino F.R., Fletcher J.M., Snowling M.J. et al. Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 2004. Vol. 45 (1), pp. 2–40. DOI: 10.1046/j.0021-9630.2003.00305.x
- Ward L.M., Kapoula Z. Differential diagnosis of vergence and saccade disorders in dyslexia. Scientific Reports, 2020. Vol. 10, article 22116. DOI: 10.1038/s41598-020-79089-1
- Wu Y.J., Yang W.H., Wang Q.X. et al. Eye-movement patterns of Chinese children with developmental dyslexia during the Stroop test. Biomedical and Environmental Sciences, 2018. Vol. 31 (9), pp. 677–685. DOI: 10.3967/bes2018.092
Information About the Authors
Metrics
Views
Total: 670
Previous month: 51
Current month: 33
Downloads
Total: 386
Previous month: 28
Current month: 15