Neurocognitive aspects of timing and sensorimotor synchronization

401

Abstract

The article presents a review of the neurocognitive studies of time perception, timing, and sensorimotor synchronization. These fundamental abilities of humans and animals are an essential component of many cognitive processes: speech, memory, attention, planning, and forecasting. Violations of the processes of timing and sensorimotor integration and synchronization accompany some disorders in the motor and cognitive spheres: speech and language problems, autism, ADHD, neurodegenerative diseases, memory disorders. Many brain structures are involved in the implementation of timing processes: motor cortex, cerebellum, basal ganglia, some brain stem structures. The emotional valence and arousal of stimuli change the subjective perception of their duration. It is important to note the positive role of training time and rhythm perception and movements to rhythmic sounds and music in the rehabilitation process.

General Information

Keywords: timing, time perception, sensorimotor synchronization, tapping, cognitive functions, emotions.

Journal rubric: Neurosciences and Cognitive Studies

Article type: review article

DOI: https://doi.org/10.17759/jmfp.2020090207

For citation: Kovaleva A.V. Neurocognitive aspects of timing and sensorimotor synchronization [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2020. Vol. 9, no. 2, pp. 82–92. DOI: 10.17759/jmfp.2020090207. (In Russ., аbstr. in Engl.)

References

  1. Kovaleva A.V. Fiziologicheskie osnovy vospriyatiya i vosproizvedeniya ritma v nevrologii [Physiological basis of perception and reproduction of rhythm in neurology] [Elektronnyi resurs]. Russkii meditsinskii zhurnal. Nevrologiya = Russian Medical Journal. Neurology, 2018. Vol. 26, no. 12-1, P. 61–66. URL: https://www.rmj.ru/articles/nevrologiya/Fiziologicheskie_osnovy_vospriyatiya_i_vosproizvedeniya_ritma_v_nevrologii/ (Accessed 08.06.2020). (In Russ.).
  2. Sares A.G. et al. Adults who stutter and metronome synchronization: evidence for a nonspeech timing deficit. Annals of the New York Academy of Sciences, 2019. Vol. 1449, no. 1, pp. 56–69. DOI:10.1111/nyas.14117
  3. Bobin-Bègue A., Droit-Volet S., Provasi J. Young children’s difficulties in switching from rhythm production to temporal interval production (> 1 s). Frontiers in psychology, 2014. Vol. 5, article ID 1346, 10 p. DOI:10.3389/fpsyg.2014.01346
  4. Bradley M., Lang P. International affective digitized sounds (IADS): Stimuli, instruction manual and affective ratings: Technical Report no. b-2: Vol. 803. 1999. 49 p.
  5. Buhusi C.V., Meck W.H. Interval timing with gaps and distracters: evaluation of the ambiguity, switch, and time-sharing hypotheses. Journal of experimental psychology: Animal behavior processes, 2006. Vol. 32, no. 3, pp. 329–338. DOI:10.1037/0097-7403.32.3.329
  6. Molinari M. et al. Cerebellum and detection of sequences, from perception to cognition. The Cerebellum, 2008. Vol. 7, no. 4, pp. 611–615. DOI:10.1007/s12311-008-0060-x
  7. Ptacek R. et al. Clinical Implications of the Perception of Time in Attention Deficit Hyperactivity Disorder (ADHD): A Review. Medical science monitor: international medical journal of experimental and clinical research, 2019. Vol. 25, pp. 3918–3924. DOI:10.12659/MSM.914225
  8. Cheng R.K. et al. Clock speed as a window into dopaminergic control of emotion and time perception. Timing & Time Perception, 2016. Vol. 4, no. 1, pp. 99–122. DOI:10.1163/22134468-00002064
  9. Corriveau K.H., Goswami U. Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat. Cortex, 2009. Vol. 45, no. 1, pp. 119–130. DOI:10.1016/j.cortex.2007.09.008
  10. Cos I., Girard B., Guigon E. Balancing out dwelling and moving: optimal sensorimotor synchronization. Journal of neurophysiology, 2015. Vol. 114, no. 1, pp. 146–158. DOI:10.1152/jn.00175.2015
  11. Coull J.T., Cheng R.K., Meck W.H. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 2011. Vol. 36, no. 1, pp. 3–25. DOI:10.1038/npp.2010.113
  12. Okuda J. et al. Differential involvement of regions of rostral prefrontal cortex (Brodmann area 10) in time-and event-based prospective memory. International Journal of Psychophysiology, 2007. Vol. 64, no. 3, pp. 233–246. DOI:10.1016/j.ijpsycho.2006.09.009
  13. Zachopoulou E. et al. Differentiation of parameters for rhythmic ability among young tennis players, basketball players and swimmers. European Journal of Physical Education, 2000. Vol. 5, no. 2, pp. 220–230. DOI:10.1080/1740898000050208
  14. Provasi J. et al. Disrupted sensorimotor synchronization, but intact rhythm discrimination, in children treated for a cerebellar medulloblastoma. Research in developmental disabilities, 2014. Vol. 35, no. 9, pp. 2053–2068. DOI:10.1016/j.ridd.2014.04.024
  15. Jerde T.A. et al. Dissociable systems of working memory for rhythm and melody. Neuroimage, 2011. Vol. 57, no. 4, pp. 1572–1579. DOI:10.1016/j.neuroimage.2011.05.061
  16. Matthews A.R. et al. Dissociation of the role of the prelimbic cortex in interval timing and resource allocation: beneficial effect of norepinephrine and dopamine reuptake inhibitor nomifensine on anxiety-inducing distraction. Frontiers in integrative neuroscience, 2012. Vol. 6, article ID 111, 12 p. DOI:10.3389/fnint.2012.00111
  17. O'Reilly J.X. et al. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral cortex, 2010. Vol. 20, no. 4, pp. 953–965. DOI:10.1093/cercor/bhp157
  18. Donnellan A.M., Hill D.A., Leary M.R. Rethinking autism: implications of sensory and movement differences for understanding and support. Frontiers in integrative neuroscience, 2013. Vol. 6, 11 p. DOI:10.3389/fnint.2012.00124
  19. Droit‐Volet S., Brunot S., Niedenthal P. Brief report: Perception of the duration of emotional events. Cognition and Emotion, 2004. Vol. 18, no. 6, pp. 849–858. DOI:10.1080/02699930341000194
  20. Droit-Volet S., Meck W.H. How emotions colour our perception of time. Trends in cognitive sciences, 2007. Vol. 11, no. 12, pp. 504–513. DOI:10.1016/j.tics.2007.09.008
  21. Buijink A. et al. Essential tremor, the olivocerebellar system and motor timing–An fMRI study. Clinical Neurophysiology, 2016. Vol. 127, no. 3, 6 p. DOI:10.1016/j.clinph.2015.10.020
  22. Grahn J.A. Neural mechanisms of rhythm perception: current findings and future perspectives. Topics in cognitive science, 2012. Vol. 4, no. 4, pp. 585–606. DOI:10.1111/j.1756-8765.2012.01213.x
  23. Grondin S. Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 2010. Vol. 72, no. 3, pp. 561–582. DOI:10.3758/APP.72.3.561
  24. Holm L., Ullén F., Madison G. Motor and executive control in repetitive timing of brief intervals. Journal of Experimental Psychology: Human Perception and Performance, 2013. Vol. 39, no. 2, pp. 365–380. DOI:10.1037/a0029142
  25. Noulhiane M. et al. How Emotional Auditory Stimuli Modulate Time Perception. Emotion, 2007. Vol. 7, no. 4, pp. 697–704. DOI:10.1037/1528-3542.7.4.697
  26. White-Schwoch T.A. et al. Individual differences in rhythm skills: links with neural consistency and linguistic ability. Journal of Cognitive Neuroscience, 2017. Vol. 29, no. 5, pp. 855–868. DOI:10.1162/jocn_a_01092
  27. Karmarkar U.R., Buonomano D.V. Timing in the absence of clocks: encoding time in neural network states. Neuron, 2007. Vol. 53, no. 3, pp. 427–438. DOI:10.1016/j.neuron.2007.01.006
  28. Kotz S.A., Ravignani A., Fitch W.T. The evolution of rhythm processing. Trends in cognitive sciences, 2018. Vol. 22, no. 10, pp. 896–910. DOI:10.1016/j.tics.2018.08.002
  29. Lang P.J., Bradley M.M., Cuthbert B.N. International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report A-6. Gainesville, Fl. : NIMH, Center for the Study of Emotion & Attention, 2005.
  30. Martel A.C., Apicella P. Temporal processing in the striatum: interplay between midbrain dopamine neurons and striatal cholinergic interneurons. European Journal of Neuroscience, 2020. 10 p. (In press). DOI:10.1111/ejn.14741
  31. McGrew K., Vega A. The efficacy of rhythm-based (mental timing) treatments with subjects with a variety of clinical disorders: A brief review of theoretical, diagnostic, and treatment research. Institute for Applied Psychometrics Research Report. 2009, no. 9, 32 p.
  32. Meck W.H., MacDonald C.J. Amygdala inactivation reverses fear's ability to impair divided attention and make time stand still. Behavioral neuroscience, 2007. Vol. 121, no. 4, pp. 707–720. DOI:10.1037/0735-7044.121.4.707
  33. Monier F., Droit-Volet S. Development of sensorimotor synchronization abilities: Motor and cognitive components. Child Neuropsychology, 2019. Vol. 25, no. 8, pp. 1043–1062. DOI:10.1080/09297049.2019.1569607
  34. Paton J.J., Buonomano D.V. The neural basis of timing: distributed mechanisms for diverse functions. Neuron, 2018. Vol. 98, no. 4, pp. 687–705. DOI:10.1016/j.neuron.2018.03.045
  35. Repp B.H., Su Y.H. Sensorimotor synchronization: a review of recent research (2006–2012). Psychonomic bulletin & review, 2013. Vol. 20, no. 3, pp. 403–452. DOI:10.3758/s13423-012-0371-2
  36. Tanaka M. et al. Roles of the cerebellum in motor preparation and prediction of timing. Neuroscience, 2020. 30 p. (In press). DOI:10.1016/j.neuroscience.2020.04.039
  37. Stoodley C.J., Valera E.M., Schmahmann J.D. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage, 2012. Vol. 59, no. 2, pp. 1560–1570. DOI:10.1016/j.neuroimage.2011.08.065
  38. Sugiyama T., Liew S.L. The Effects of Sensory Manipulations on Motor Behavior: From Basic Science to Clinical Rehabilitation. Journal of motor behavior, 2017. Vol. 49, no. 1, pp. 67–77. DOI:10.1080/00222895.2016.1241740
  39. Konoike N. et al. Temporal and motor representation of rhythm in fronto-parietal cortical areas: an fMRI study. PloS one, 2015. Vol. 10, no. 6, 19 p. DOI:10.1371/journal.pone.0130120
  40. Thaut M.H., Abiru M. Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Perception: An Interdisciplinary Journal, 2010. Vol. 27, no. 4, pp. 263–269. DOI:10.1525/mp.2010.27.4.263
  41. Angrilli A. et al. The influence of affective factors on time perception [Электронный ресурс]. Perception & psychophysics, 1997. Vol. 59, no. 6, pp. 972–982. URL: https://link.springer.com/content/pdf/10.3758/BF03205512.pdf (Accessed 08.06.2020).
  42. Tierney A.T., Kraus N. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain and language, 2013. Vol. 124, no. 3, pp. 225–231. DOI:10.1016/j.bandl.2012.12.014
  43. Droit-Volet S. et al. Time perception in children treated for a cerebellar medulloblastoma. Research in developmental disabilities, 2013. Vol. 34, no. 1, pp. 480–494. DOI:10.1016/j.ridd.2012.09.006
  44. Janzen T.B. et al. Timing skills and expertise: discrete and continuous timed movements among musicians and athletes. Frontiers in psychology, 2014. Vol. 5, article ID 1482, 11 p. DOI:10.3389/fpsyg.2014.01482
  45. Mioni G. et al. Understanding time perception through non-invasive brain stimulation techniques: A review of studies. Behavioural brain research, 2020. Vol. 377, article ID 112232. 17 p. DOI:10.1016/j.bbr.2019.112232
  46. Van de Vorst R., Gracco V.L. Atypical non-verbal sensorimotor synchronization in adults who stutter may be modulated by auditory feedback. Journal of fluency disorders, 2017. Vol. 53, pp. 14–25. DOI:10.1016/j.jfludis.2017.05.004
  47. Vicario C.M. Cognitively controlled timing and executive functions develop in parallel? A glimpse on childhood research. Frontiers in behavioral neuroscience, 2013. Vol. 7, article ID 146, 4 p. DOI:10.3389/fnbeh.2013.00146
  48. Williams K.E. Moving to the beat: Using music, rhythm, and movement to enhance self-regulation in early childhood classrooms. International Journal of Early Childhood, 2018. Vol. 50, no. 1, pp. 85–100. DOI:10.1007/s13158-018-0215-y

Information About the Authors

Anastasia V. Kovaleva, PhD in Biology, Senior Researcher, Laboratory of Physiology of Human Functional States, P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russia, ORCID: https://orcid.org/0000-0001-7377-3408, e-mail: a.kovaleva@nphys.ru

Metrics

Views

Total: 678
Previous month: 26
Current month: 9

Downloads

Total: 401
Previous month: 3
Current month: 1