Sensory deprivation as a model for the actualizing compensatory brain resources

735

Abstract

The concepts of «cognitive» or «compensatory brain reserves» are proposed to explain a wide individual variability of changes in cognitive functions during aging and are used to study the adaptive reorganization of the neural systems of the brain in damages of its functions due to various pathological processes, including deprivation of visual or auditory information. The development of tomographic methods for estimating the volume and functional activity of individual brain structures made it possible to obtain new information on the mechanisms of neuroplasticity caused by sensory deprivation. The literature review provides evidences of the cross-modal development of brain structures to ensure the processes of perception and processing of environmental stimuli based on compensatory replacement of the missing sensory function and a possible increase in the effectiveness of the activity of the analyzer systems. The described patterns of formation and stimulation of compensatory reserves are important for understanding the fundamentals of brain activity, and from a practical point of view, for improving training programs or developing methods for correcting the negative effects of brain aging or damage.

General Information

Keywords: sensory deprivation, compensatory reserves, visual impairment, hearing impairment, neuroplasticity, cross-modal reorganization of sensory systems.

Journal rubric: Neurosciences

Article type: review article

DOI: https://doi.org/10.17759/jmfp.2020090205

For citation: Razumnikova O.M., Krivonogova K.D. Sensory deprivation as a model for the actualizing compensatory brain resources [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2020. Vol. 9, no. 2, pp. 57–67. DOI: 10.17759/jmfp.2020090205. (In Russ., аbstr. in Engl.)

References

Setti W. et al. A novel paradigm to study spatial memory skills in blind individuals through the auditory modality. Scientific Reports, 2018. Vol. 8, article ID 13393, 10 p. DOI:10.1038/s41598-018-31588-y

Pereira-Jorge M.R. et al. Anatomical and functional MRI changes after one year of auditory rehabilitation with hearing aids. Neural Plasticity, 2018. Vol. 2018, article ID 9303674, 13 p. DOI:10.1155/2018/9303674

Atilgan H., Collignon O., Hasson U. Structural neuroplasticity of the superior temporal plane in early and late blindness. Brain and Language, 2017. Vol. 170, pp. 71–81. DOI:10.1016/j.bandl.2017.03.008

Baddeley A. Working memory [Elektronnyi resurs]. Current Biology, 2010. Vol. 20, no. 4, pp. 136–140. URL: http://www.sciencedirect.com/science/article/pii/S0960982209021332 (Accessed 20.05.2020).

Scheich H. et al. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept. Hearing Research, 2011. Vol. 271, no. 1–2, pp. 3–15. DOI:10.1016/j.heares.2010.10.006

Bubic A., Striem-Amit E., Amedi A. Large-scale brain plasticity following blindness and the use of sensory substitution devices. In Naumer M.J., Kaiser J. (eds.). Multisensory Object Perception in the Primate Brain. New York: Springer, 2010. pp. 351–380. DOI:10.1007/978-1-4419-5615-6_18

Calvert G.A., Campbell R., Brammer M.J. Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 2000. Vol. 10, no. 11, pp. 649–657. DOI:10.1016/S0960-9822(00)00513-3

Cardon G., Sharma A. Somatosensory cross-modal reorganization in adults with age-related, early-stage hearing loss. Frontiers in Human Neuroscience, 2018. Vol. 12, article ID 172, 11 p. DOI:10.3389/fnhum.2018.00172

Frasnelli J. et al. Crossmodal plasticity in sensory loss. Progress in Brain Research, 2011. Vol. 191, pp. 233–249. DOI:10.1016/B978-0-444-53752-2.00002-3

Dewey R.S, Hartley D.E. Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy. Hearing Research, 2015. Vol. 325, pp. 55–63. DOI:10.1016/j.heares.2015.03.007

Stevenson J. et al. Emotional and behaviour difficulties in teenagers with permanent childhood hearing loss. International Journal of Pediatric Otorhinolaryngology, 2017. Vol. 101, pp. 186–195. DOI:10.1016/j.ijporl.2017.07.031

Fuchs E., Flügge G. Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014. Vol. 2014, article ID 541870, 10 p. DOI:10.1155/2014/541870

Heimler B., Weisz N., Collignon O. Revisiting the adaptive and maladaptive effects of crossmodal plasticity. Neuroscience, 2014. Vol. 283, pp. 44–63. DOI:10.1016/j.neuroscience.2014.08.003

Henscke J., Ohl F., Budinger E. Crossmodal connections of primary sensory cortices largely vanish during normal aging. Aging Neuroscience, 2018. Vol. 10, article ID 52, 14 p. DOI:10.3389/fnagi.2018.00052

Hirsch G.V., Bauer C.M., Merabet L.B. Using structural and functional brain imaging to uncover how the brain adapts to blindness. Annals of neuroscience and psychology, 2015. Vol. 2:5, 20 p. DOI:10.7243/2055-3447-2-7

Collignon O. et al. Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain, 2013. Vol. 136, no. 9, pp. 2769–2783. DOI:10.1093/brain/awt176

Karns C.M., Dow M.W., Neville H.J. Altered cross-modal processing in the primary auditory cortex of congenitally deaf adults: A visual-somatosensory fMRI study with a double-flash illusion. Journal of Neuroscience, 2012. Vol. 32, no. 28, pp. 9626–9638. DOI:10.1523/JNEUROSCI.6488-11.2012

King A.J. Crossmodal plasticity and hearing capabilities following blindness. Cell and Tissue Research, 2015. Vol. 361, no. 1, pp. 295–300. DOI:10.1007/s00441-015-2175-y

Que M. et al. Language and sensory neural plasticity in the superior temporal cortex of the deaf. Neural Plasticity, 2018. Vol. 2014, article ID 9456891, 17 p. DOI:10.1155/2018/9456891

Lazzouni L., Lepore F. Compensatory plasticity: time matters. Frontiers in Human Neuroscience, 2014. Vol. 8, article ID 340, 11 p. DOI:10.3389/fnhum.2014.00340

Van Essen D.C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research, 2001. Vol. 41, no. 10–11, pp. 1359–1378. DOI:10.1016/S0042-6989(01)00045-1

Merabet L.B., Pascual-Leone A. Neural reorganization following sensory Loss: The opportunity of change. Nature Reviews Neuroscience, 2010. Vol. 11, no. 1, pp. 44–52. DOI:10.1038/nrn2758

Bauer C.M. et al. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness. PLoS One, 2017. Vol. 12, no. 3, 26 p. DOI:10.1371/journal.pone.0173064

Sevy A.B.G. et al. Neuroimaging with near-infrared spectroscopy demonstrates speech-evoked activity in the auditory cortex of deaf children following cochlear implantation. Hearing research, 2010. Vol. 270, no. 1–2, pp. 39–47. DOI:10.1016/j.heares.2010.09.010

Van Ackeren M.J. et al. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech. ELife, 2018. Vol. 7, 20 p. DOI:10.7554/eLife.31640

Obretenova S. et al. Neuroplasticity associated with tactile language communication in a deaf-blind subject. Frontiers in Human Neuroscience, 2009. Vol. 3, article ID 60, 14 p. DOI:10.3389/neuro.09.060.2009

Fairhall S.L. et al. Plastic reorganization of neural systems for perception of others in the congenitally blin. NeuroImage, 2017. Vol. 158, pp. 126–135. DOI:10.1016/j.neuroimage.2017.06.057

Worsfold S. et al. Predicting reading ability in teenagers who are deaf or hard of hearing: A longitudinal analysis of language and reading. Research in Developmental Disabilities, 2018. Vol. 77, pp. 49–59. DOI:10.1016/j.ridd.2018.04.007

Hou F. et al. Reduction of Interhemispheric functional brain connectivity in early blindness: A resting-state fMRI Study. BioMed Research International, 2017. Vol. 2017, article ID 6756927, 8 p. DOI:10.1155/2017/6756927

Gori M. et al. Shape perception and navigation in blind adults. Frontiers in Psychology, 2017. Vol. 8, article ID 10, 12 p. DOI:10.3389/fpsyg.2017.00010

Pelland M. et al. State-dependent modulation of functional connectivity in early blind individuals. NeuroImage, 2017. Vol. 147, pp. 532–541. DOI:10.1016/j.neuroimage.2016.12.053

Stern Y. Cognitive reserve [Elektronnyi resurs]. Neuropsychologia, 2009. Vol. 47, no. 10, pp. 2015–2028. URL: http://www.sciencedirect.com/science/article/pii/S0028393209001237 (Accessed 20.05.2020).

Stern Y. Cognitive reserve: Implications for assessment and intervention. Folia phoniatrica et logopaedica, 2013. Vol. 65, no. 2, pp. 49–54. DOI:10.1159/000353443

Stiles N.R.B., Shimojo S. Sensory substitution: A new perceptual experience. In Wagemans J. (ed.). The Oxford Handbook of Perceptual Organization. USA: Oxford University Press, 2015, pp. 655–672. DOI:10.1093/oxfordhb/9780199686858.013.050

Szwed M., Bola L., Zimmermann M. Whether the hearing brain hears it or the deaf brain sees it, it’s just the same. Proceedings of the National Academy of Sciences, 2017, pp. 114, no. 31, pp. 8135–8137. DOI:10.1073/pnas.1710492114

Cancar L. et al. Tactile-sight: A sensory substitution device based on distance-related vibrotactile flow. International Journal of Advanced Robotic Systems, 2013. Vol. 10, 11 p. DOI:10.5772/56235

Vasile C. Cognitive reserve and cortical plasticity. Procedia – Social and Behavioral Sciences, 2013. Vol. 78, pp. 601–604. DOI:10.1016/j.sbspro.2013.04.359

Strelnikov K. et al. Visual activity predicts auditory recovery from deafness after adult cochlear implantation. Brain, 2013. Vol. 136, no. 12, pp. 3682–3695. DOI:10.1093/brain/awt274

Voss P. Brain (re)organization following visual loss. WIREs Cogn Sci, 2019. Vol. 10, no. 1, 12 p. DOI:10.1002/wcs.1468

Zhou X., Merzenich M.M. Developmentally degraded cortical temporal processing restored by training. Nature Neuroscience, 2009. Vol. 12, no. 1, pp. 26–28. DOI:10.1038/nn.2239

Information About the Authors

Olga M. Razumnikova, Doctor of Biology, Professor of the Department of Psychology and Pedagogic, Novosibirsk State Technical University, Novosibirsk, Russia, ORCID: https://orcid.org/0000-0002-7831-9404, e-mail: razoum@mail.ru

Kseniya D. Krivonogova, PhD Student of Department of Psychology and Pedagogic, Novosibirsk State Technical University, Educational Psychologist, Institute of Social Technologies and Rehabilitation, Novosibirsk, Russia, ORCID: https://orcid.org/0000-0003-4773-0396, e-mail: kseniansk123@gmail.com

Metrics

Views

Total: 1158
Previous month: 244
Current month: 195

Downloads

Total: 735
Previous month: 26
Current month: 28