Journal of Modern Foreign Psychology
2020. Vol. 9, no. 2, 57–67
doi:10.17759/jmfp.2020090205
ISSN: 2304-4977 (online)
Sensory deprivation as a model for the actualizing compensatory brain resources
Abstract
General Information
Keywords: sensory deprivation, compensatory reserves, visual impairment, hearing impairment, neuroplasticity, cross-modal reorganization of sensory systems.
Journal rubric: Neurosciences
Article type: review article
DOI: https://doi.org/10.17759/jmfp.2020090205
For citation: Razumnikova O.M., Krivonogova K.D. Sensory deprivation as a model for the actualizing compensatory brain resources [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2020. Vol. 9, no. 2, pp. 57–67. DOI: 10.17759/jmfp.2020090205. (In Russ., аbstr. in Engl.)
References
Setti W. et al. A novel paradigm to study spatial memory skills in blind individuals through the auditory modality. Scientific Reports, 2018. Vol. 8, article ID 13393, 10 p. DOI:10.1038/s41598-018-31588-y
Pereira-Jorge M.R. et al. Anatomical and functional MRI changes after one year of auditory rehabilitation with hearing aids. Neural Plasticity, 2018. Vol. 2018, article ID 9303674, 13 p. DOI:10.1155/2018/9303674
Atilgan H., Collignon O., Hasson U. Structural neuroplasticity of the superior temporal plane in early and late blindness. Brain and Language, 2017. Vol. 170, pp. 71–81. DOI:10.1016/j.bandl.2017.03.008
Baddeley A. Working memory [Elektronnyi resurs]. Current Biology, 2010. Vol. 20, no. 4, pp. 136–140. URL: http://www.sciencedirect.com/science/article/pii/S0960982209021332 (Accessed 20.05.2020).
Scheich H. et al. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept. Hearing Research, 2011. Vol. 271, no. 1–2, pp. 3–15. DOI:10.1016/j.heares.2010.10.006
Bubic A., Striem-Amit E., Amedi A. Large-scale brain plasticity following blindness and the use of sensory substitution devices. In Naumer M.J., Kaiser J. (eds.). Multisensory Object Perception in the Primate Brain. New York: Springer, 2010. pp. 351–380. DOI:10.1007/978-1-4419-5615-6_18
Calvert G.A., Campbell R., Brammer M.J. Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 2000. Vol. 10, no. 11, pp. 649–657. DOI:10.1016/S0960-9822(00)00513-3
Cardon G., Sharma A. Somatosensory cross-modal reorganization in adults with age-related, early-stage hearing loss. Frontiers in Human Neuroscience, 2018. Vol. 12, article ID 172, 11 p. DOI:10.3389/fnhum.2018.00172
Frasnelli J. et al. Crossmodal plasticity in sensory loss. Progress in Brain Research, 2011. Vol. 191, pp. 233–249. DOI:10.1016/B978-0-444-53752-2.00002-3
Dewey R.S, Hartley D.E. Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy. Hearing Research, 2015. Vol. 325, pp. 55–63. DOI:10.1016/j.heares.2015.03.007
Stevenson J. et al. Emotional and behaviour difficulties in teenagers with permanent childhood hearing loss. International Journal of Pediatric Otorhinolaryngology, 2017. Vol. 101, pp. 186–195. DOI:10.1016/j.ijporl.2017.07.031
Fuchs E., Flügge G. Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014. Vol. 2014, article ID 541870, 10 p. DOI:10.1155/2014/541870
Heimler B., Weisz N., Collignon O. Revisiting the adaptive and maladaptive effects of crossmodal plasticity. Neuroscience, 2014. Vol. 283, pp. 44–63. DOI:10.1016/j.neuroscience.2014.08.003
Henscke J., Ohl F., Budinger E. Crossmodal connections of primary sensory cortices largely vanish during normal aging. Aging Neuroscience, 2018. Vol. 10, article ID 52, 14 p. DOI:10.3389/fnagi.2018.00052
Hirsch G.V., Bauer C.M., Merabet L.B. Using structural and functional brain imaging to uncover how the brain adapts to blindness. Annals of neuroscience and psychology, 2015. Vol. 2:5, 20 p. DOI:10.7243/2055-3447-2-7
Collignon O. et al. Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain, 2013. Vol. 136, no. 9, pp. 2769–2783. DOI:10.1093/brain/awt176
Karns C.M., Dow M.W., Neville H.J. Altered cross-modal processing in the primary auditory cortex of congenitally deaf adults: A visual-somatosensory fMRI study with a double-flash illusion. Journal of Neuroscience, 2012. Vol. 32, no. 28, pp. 9626–9638. DOI:10.1523/JNEUROSCI.6488-11.2012
King A.J. Crossmodal plasticity and hearing capabilities following blindness. Cell and Tissue Research, 2015. Vol. 361, no. 1, pp. 295–300. DOI:10.1007/s00441-015-2175-y
Que M. et al. Language and sensory neural plasticity in the superior temporal cortex of the deaf. Neural Plasticity, 2018. Vol. 2014, article ID 9456891, 17 p. DOI:10.1155/2018/9456891
Lazzouni L., Lepore F. Compensatory plasticity: time matters. Frontiers in Human Neuroscience, 2014. Vol. 8, article ID 340, 11 p. DOI:10.3389/fnhum.2014.00340
Van Essen D.C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research, 2001. Vol. 41, no. 10–11, pp. 1359–1378. DOI:10.1016/S0042-6989(01)00045-1
Merabet L.B., Pascual-Leone A. Neural reorganization following sensory Loss: The opportunity of change. Nature Reviews Neuroscience, 2010. Vol. 11, no. 1, pp. 44–52. DOI:10.1038/nrn2758
Bauer C.M. et al. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness. PLoS One, 2017. Vol. 12, no. 3, 26 p. DOI:10.1371/journal.pone.0173064
Sevy A.B.G. et al. Neuroimaging with near-infrared spectroscopy demonstrates speech-evoked activity in the auditory cortex of deaf children following cochlear implantation. Hearing research, 2010. Vol. 270, no. 1–2, pp. 39–47. DOI:10.1016/j.heares.2010.09.010
Van Ackeren M.J. et al. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech. ELife, 2018. Vol. 7, 20 p. DOI:10.7554/eLife.31640
Obretenova S. et al. Neuroplasticity associated with tactile language communication in a deaf-blind subject. Frontiers in Human Neuroscience, 2009. Vol. 3, article ID 60, 14 p. DOI:10.3389/neuro.09.060.2009
Fairhall S.L. et al. Plastic reorganization of neural systems for perception of others in the congenitally blin. NeuroImage, 2017. Vol. 158, pp. 126–135. DOI:10.1016/j.neuroimage.2017.06.057
Worsfold S. et al. Predicting reading ability in teenagers who are deaf or hard of hearing: A longitudinal analysis of language and reading. Research in Developmental Disabilities, 2018. Vol. 77, pp. 49–59. DOI:10.1016/j.ridd.2018.04.007
Hou F. et al. Reduction of Interhemispheric functional brain connectivity in early blindness: A resting-state fMRI Study. BioMed Research International, 2017. Vol. 2017, article ID 6756927, 8 p. DOI:10.1155/2017/6756927
Gori M. et al. Shape perception and navigation in blind adults. Frontiers in Psychology, 2017. Vol. 8, article ID 10, 12 p. DOI:10.3389/fpsyg.2017.00010
Pelland M. et al. State-dependent modulation of functional connectivity in early blind individuals. NeuroImage, 2017. Vol. 147, pp. 532–541. DOI:10.1016/j.neuroimage.2016.12.053
Stern Y. Cognitive reserve [Elektronnyi resurs]. Neuropsychologia, 2009. Vol. 47, no. 10, pp. 2015–2028. URL: http://www.sciencedirect.com/science/article/pii/S0028393209001237 (Accessed 20.05.2020).
Stern Y. Cognitive reserve: Implications for assessment and intervention. Folia phoniatrica et logopaedica, 2013. Vol. 65, no. 2, pp. 49–54. DOI:10.1159/000353443
Stiles N.R.B., Shimojo S. Sensory substitution: A new perceptual experience. In Wagemans J. (ed.). The Oxford Handbook of Perceptual Organization. USA: Oxford University Press, 2015, pp. 655–672. DOI:10.1093/oxfordhb/9780199686858.013.050
Szwed M., Bola L., Zimmermann M. Whether the hearing brain hears it or the deaf brain sees it, it’s just the same. Proceedings of the National Academy of Sciences, 2017, pp. 114, no. 31, pp. 8135–8137. DOI:10.1073/pnas.1710492114
Cancar L. et al. Tactile-sight: A sensory substitution device based on distance-related vibrotactile flow. International Journal of Advanced Robotic Systems, 2013. Vol. 10, 11 p. DOI:10.5772/56235
Vasile C. Cognitive reserve and cortical plasticity. Procedia – Social and Behavioral Sciences, 2013. Vol. 78, pp. 601–604. DOI:10.1016/j.sbspro.2013.04.359
Strelnikov K. et al. Visual activity predicts auditory recovery from deafness after adult cochlear implantation. Brain, 2013. Vol. 136, no. 12, pp. 3682–3695. DOI:10.1093/brain/awt274
Voss P. Brain (re)organization following visual loss. WIREs Cogn Sci, 2019. Vol. 10, no. 1, 12 p. DOI:10.1002/wcs.1468
Zhou X., Merzenich M.M. Developmentally degraded cortical temporal processing restored by training. Nature Neuroscience, 2009. Vol. 12, no. 1, pp. 26–28. DOI:10.1038/nn.2239
Information About the Authors
Metrics
Views
Total: 688
Previous month: 16
Current month: 3
Downloads
Total: 639
Previous month: 35
Current month: 2