On the Suboptimal Solution of the Speed-In-Action Problem for a Linear Discrete System in the Case of Asymmetric Control Constraints

21

Abstract

The paper considers a linear discrete system with bounded control. The speed-in-action problem is solved for the system, that is, it is required to construct a control process that transfers the system from the initial state to the origin in a minimum number of steps. If the set of acceptable control values has a superellipse structure, then the problem of calculating optimal control can be reduced to solving a system of algebraic equations. A superellipsoidal approximation method has been developed for sets of arbitrary structure, and the case of asymmetric sets has been considered. Examples are given.

General Information

Keywords: linear control system, speed problem, 0-controllability sets, maximum principle, superellipse

Journal rubric: Optimization Methods

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2024140304

Received: 16.06.2024

Accepted:

For citation: Podgornaya V.M. On the Suboptimal Solution of the Speed-In-Action Problem for a Linear Discrete System in the Case of Asymmetric Control Constraints. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2024. Vol. 14, no. 3, pp. 63–86. DOI: 10.17759/mda.2024140304. (In Russ., аbstr. in Engl.)

References

  1. Berendakova A.V., Ibragimov D.N. About the Method for Constructing External Estimates of the Limit Controllability Set for the Linear Discrete-Time System with Bounded Control. Remote Control. 2023. Vol. 84. no. 2. pp. 83–104. DOI:10.1134/S0005117923020030
  2. Boltyanskij V.G. Optimal'noe upravlenie diskretnymi sistemami [Optimal control of discrete systems]. Мoskva: Nauka=Moscow: The science. 1973. (In Russ.).
  3. Garkavi A.L. O chebyshevskom tsentre i vypukloi obolochke mnozhestva [About the Chebyshev center and the convex hull of the set]. Uspekhi matematicheskikh nauk=Achievements of mathematical sciences. Vol. 19. no. 6. pp. 139-145. (In Russ.).
  4. Zhuravlev V.F. Osnovy teoreticheskoi mekhaniki [Fundamentals of theoretical mechanics]. Moskva: Izdatel'stvo Fiziko-matematicheskoi literatury=Moscow: Publishing House of Physical and Mathematical Literature. 2001. (In Russ.).
  5. Ibragimov D.N., Novozhilin N.M., Portseva E.Yu. On Sufficient Optimality Conditions for a Guaranteed Control in the Speed Problem for a Linear Time-Varying Discrete-Time System with Bounded Control. Remote Control. 2021. Vol. 82. no. 12. pp. 2076–2096. DOI:10.1134/S000511792112002X
  6. Ibragimov D.N. On the Optimal Speed Problem for the Class of Linear Autonomous Infinite-Dimensional Discrete-Time Systems with Bounded Control and Degenerate Operator. Remote Control. 2019. Vol. 80. no. 3. pp. 393–412. DOI:10.1134/S0005117919030019
  7. Ibragimov D.N., Podgornaya V.M. Superellipsoidal'nye approksimatsii v zadache bystrodeistviya dlya dvumernoi lineinoi diskretnoi sistemy s ogranichennym upravleniem [Superellipsoidal Approximations in the Speed-in-action Problem for a Two-dimensional Linear Discrete System with Bounded Control]. Modelirovanie i analiz dannykh=Modelling and Data Analysis. 2023. Vol. 13. no. 2. pp. 151–179. DOI: 10.17759/mda.2023130209 (In Russ.).
  8. Ibragimov D.N., Podgornaya V.M. Construction of the Time-Optimal Bounded Control for Linear Discrete-Time Systems Based on the Method of Superellipsoidal Approximation. Remote Control. 2023. Vol. 84. no. 9. pp. 924–946. DOI: 10.1134/S0005117923090035
  9. Ibragimov D.N., Sirotin A.N. On the Problem of Operation Speed for the Class of Linear Infinite-Dimensional Discrete-Time Systems with Bounded Control. Remote Control. 2017. Vol. 78. no. 10. pp. 1731–1756. DOI: 10.1134/S0005117917100010
  10. Kolmogorov A.N., Fomin S.V. Elementy teorii funkcij i funkcional'nogo analiza [Elements of the theory of functions and functional analysis]. Мoskva: Fizmatlit=Moscow: Physical education. 2012. (In Russ.).
  11. Propoj A.I. Elementy teorii optimal'nyh diskretnyh processov [Elements of the theory of optimal discrete processes]. Мoskva: Nauka=Moscow: The science. 1973. (In Russ.).
  12. Rokafellar R. Vypuklyj analiz [Convex analysis]. Мoskva: Mir=Moscow: Mir. 1973. (In Russ.).
  13. Strashnov S.V. Ispol'zovanie superellipsov v komp'yuternom modelirovanii stroitel'nykh i mashinostroitel'nykh ob"ektov [Utilizing superellipses in computer modeling of architectural and engineering structures]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya Stroitel'stvo i arkhitektura=Bulletin of the South Ural State University. Series Construction Engineering and Architecture. Vol. 23. no. 4. pp. 67–76. DOI:10.14529/build230408 (In Russ.).
  14. Abdelhak A., Rachik M. The Linear Quadratic Minimum-Time Problem for a Class of Discrete Systems. Optimization. 2010. Vol. 59(4). pp. 575–87. DOI:10.1080/02331930801954672
  15. A Superellipse with Deformation and Its Application in Describing the Cross-Sectional Shapes of a Square Bamboo. Weiwei Huang et al. Symmetry. 2020. № 12, 2073. DOI:10.3390/sym12122073
  16. Bako L., Chen D., Lecoeuche S. A numerical solution to the minimum-time control problem for linear discrete-time systems. 2011. DOI:10.48550/arXiv.1109.3772
  17. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape. Shi Pei-Jian et al. Frontiers in Plant Science. Vol. 6. DOI:10.3389/fpls.2015.00856
  18. Discrete-Time System Optimal Dynamic Traffic Assignment (SO-DTA) with Partial Control for Physical Queuing Networks. Samitha Samaranayake et al. Transportation Science. 2018. Vol. 52. no. 4. DOI:1287/trsc.2017.0800

Information About the Authors

Violetta M. Podgornaya, Master's Student, Engineer at the Department of Probability Theory and Computer Modeling, Moscow Aviation Institute (National Research University) (MAI), Moscow, Russia, ORCID: https://orcid.org/0009-0004-9956-3002, e-mail: vita1401@outlook.com

Metrics

Views

Total: 37
Previous month: 14
Current month: 2

Downloads

Total: 21
Previous month: 6
Current month: 2