Modelling and Data Analysis
2025. Vol. 15, no. 2, 70–88
doi:10.17759/mda.2025150204
ISSN: 2219-3758 / 2311-9454 (online)
The construction of the guaranteeing control in the time-optimization problem for linear discrete-time systems with summary control constraints
Abstract
Context and relevance. The time-optimization problem is solved for a linear stationary system with discrete-time and summary first-order constraints on control. Objective. Demonstrate the possibility of constructing the guaranteeing control in the time-optimization problem. Hypothesis. The guaranteed solution found by applying the polyhedral approximation algorithm will converge to the optimal one. Methods and materials. This task has a number of features that complicate its solution using standard methods such as dynamic programming and the maximum principle. For this reason, it is proposed to use a geometric approach and an apparatus of null-controllable sets to solve the time-optimization problem. Results. For the case when the summary constraints are piecewise-linear, it is proved that all null-controllable sets are polyhedrons, which makes it possible to reduce the initial control problem to solving a number of linear programming problems. For arbitrary convex summary constraints, the possibility of constructing a guaranteeing solution in terms of time-optimization problem based on polyhedral approximation methods is shown. Conclusions. The convergence of the guaranteeing solution to the optimal one is investigated: it is proved that it will be completed in a finite number of iterations if the polyhedral approximation algorithm used guarantees convergence in the sense of the Hausdorff metric. The developed theoretical results are demonstrated using a numerical example.
General Information
Keywords: linear discrete-time system, time-optimization problem, summary control constraints, guaranteeing solution, polyhedral approximation
Journal rubric: Optimization Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2025150204
Received 06.03.2025
Accepted
Published
For citation: Mokhnacheva, A.A. (2025). The construction of the guaranteeing control in the time-optimization problem for linear discrete-time systems with summary control constraints. Modelling and Data Analysis, 15(2), 70–88. (In Russ.). https://doi.org/10.17759/mda.2025150204
© Mokhnacheva A.A., 2025
License: CC BY-NC 4.0
References
- Понтрягин, Л.С., Болтянский, В.Г., Гамкрелидзе, Р.В., Мищенко, Б.Ф. (1969) Математическая теория оптимальных процессов. М.: Наука.
Pontryagin, L.S., Boltyanskiy, V.G., Gamkrelidze, R.V., Mishchenko, B.F. (1969) Mathematical theory of optimal processes. Moscow: Science (In Russ.). - Беллман, Р. (1960) Динамическое программирование. М.: ИИЛ.
Bellman, R. (1960) Dynamic programming. Moscow: IIL. (In Russ.). - Болтянский, В.Г. (1973) Оптимальное управление дискретными системами. М.: Наука.
Boltyanskiy, V.G. (1973) Optimal control of discrete systems. Moscow: Science. (In Russ.). - Пропой, А.И. (1973) Элементы теории оптимальных дискретных процессов. М.: Наука.
Propoy, A.I. (1973) Elements of the theory of optimal discrete processes. Moscow: Science. (In Russ.). - Ибрагимов, Д.Н. (2019) О задаче быстродействия для класса линейных автономных бесконечномерных систем с дискретным временем, ограниченным управлением и вырожденным оператором. Автоматика и Телемеханика. (3), 3–25. https://doi.org/10.1134/S0005231019030012
Ibragimov, D.N. (2019) On the Optimal Speed Problem for the Class of Linear Autonomous Infinite-Dimensional Discrete-Time Systems with Bounded Control and Degenerate Operator. Autom. Remote Control. 80 (3), 393–412. https://doi.org/10.1134/S0005117919030019 - Мороз, А.И. (1965) Синтез оптимального по быстродействию управления для линейного дискретного объекта третьего порядка. Автоматика и Телемеханика. (2), 193–207.
Moroz, A.I. (1965) Synthesis of Time-Optimal Control for Linear Discrete Objects of the Third Order. Autom. Remote Control. 25 (9), 193–206. - Desoer, C.A., Wing, J. (1961) The Minimal Time Regulator Problem for Linear Sampled-Data Systems: General Theory. Franklin Inst. 272 (3), 208–228. https://doi.org/10.1016/0016-0032(61)90784-0
- Lin, W.-S. (1986) Time-Optimal Control Strategy for Saturating Linear Discrete Systems. J. Control. 43 (5), 1343–1351. https://doi.org/10.1080/00207178608933543
- Bashein, G. (1971) A Simplex Algorithm for On-Line Computation of Time Optimal Controls. IEEE Transactions on Automatic Control. 16 (5), 479–482. https://doi.org/10.1109/TAC.1971.1099776
- Vlieger, J.H., Verbruggen, H.B., Bruijn, P.M. (1982) A Time-Optimal Control Algorithm for Digital Computer Control. 18 (2), 239–244. https://doi.org/10.1016/0005-1098(82)90111-x
- Lasserre, J.B. (1993) Reachable, Controllable Sets and Stabilizing Control of Constrained Linear Systems. 29 (2), 531–536. https://doi.org/10.1016/0005-1098(93)90152-J
- Stamnes, O.N., Callafon, R.A. (2007) Time-Optimal Input Shaping for Discrete-Time LTI Systems with Application to Seek Profiles of a HDD System. In: ASME ISPS Conf. (pp. 146–148).
- Kolev, L.V. (1978) Minimum-Fuel Minimum-Time Control of Linear Discrete Systems. International Journal of Control. 27 (1), 21–29. https://doi.org/10.1080/00207177808922344
- Scott, M. (1986) Time/Fuel Optimal Control of Constrained Linear Discrete Systems. 22 (6), 711–715. https://doi.org/10.1016/0005-1098(86)90008-7
- Blanchini, F., Ukovich, W. (1993) Linear Programming Approach to the Control of Discrete-Time Periodic Systems with Uncertain Inputs. Journal of Optimization Theory and Applications. 78 (3), 523–539. https://doi.org/10.1007/bf00939880
- Keerthi, S., Gilbert, E. (1987) Computation of Minimum-Time Feedback Control Laws for Discrete-Time Systems with State-Control Constraints. IEEE Transactions on Automatic Control. 32 (5), 432–435. https://doi.org/10.1109/tac.1987.1104625
- Abdelhak, A., Rachik, M. (2010) The Linear Quadratic Minimum-Time Problem for a Class of Discrete Systems. Math. Programming and Operations Research. 59 (4), 575–587. https://doi.org/10.1080/02331930801954672
- Amato, F., Cosentino, C., Tommasi, G. D., Pironti, A., Romano, M. (2022) Input–Output Finite-Time Stabilization of Linear Time-Varying Discrete-Time Systems. IEEE Transactions on Automatic Control. 67 (9), 4438–4450. https://doi.org/10.1109/TAC.2022.3161374
- Chen, D., Bako, L., Lecoeuche, S. (2012) The Minimum-Time Problem for Discrete-Time Linear Systems: A Non-Smooth Optimization Approach. In: Proceedings of the IEEE International Conference on Control Applications. (pp. 196–201). https://doi.org/10.1109/CCA.2012.6402693
- Lee, J., Haddad, W.M. (2022) Fixed Time Stability and Optimal Stabilisation of Discrete Autonomous Systems. International Journal of Control. 96 (9), 2341–2355. https://doi.org/1080/00207179.2022.2092557
- Yang, H., Xia, Y., Geng, Q. (2019) Stabilization on Null Controllable Region. In: Analysis and Synthesis of Delta Operator Systems with Actuator Saturation. Studies in Systems, Decision and Control. V. 193. (pp. 39–65). https://doi.org/10.1007/978-981-13-3660-7\_3
- Leomanni, M., Costante, G., Ferrante, F. (2022) Time-Optimal Control of a Multidimensional Integrator Chain With Applications. IEEE Control Systems Letters. 6, 2371–2376. https://doi.org/10.1109/LCSYS.2022.3154351
- Бортаковский, А.С. (2023) Быстродействие группы управляемых объектов. Известия РАН. Теория и системы управления. (5), 16–42. https://doi.org/31857/S000233882305004
Bortakovskii, A.S. (2023) Speed of Performance of a Group of Controlled Objects. Journal of Computer and Systems Sciences International. 62 (5), 774–799. https://doi.org/10.1134/S1064230723050040 - Ибрагимов, Д.Н., Новожилкин, Н.М., Порцева, Е.Ю. (2021) О достаточных условиях оптимальности гарантирующего управления в задаче быстродействия для линейной нестационарной дискретной системы с ограниченным управлением. Автоматика и Телемеханика. (12), 48–72. https://doi.org/31857/S0005231021120047
Ibragimov, D.N., Novozhilin, N.M., Portseva, E.Yu. (2021) On Sufficient Optimality Conditions for a Guaranteed Control in the Speed Problem for a Linear Time-Varying Discrete-Time System with Bounded Control. Autom. Remote Control. 82 (12), 2076–2096. https://doi.org/10.1134/S000511792112002X - Каменев, Г.К. (2010) Численное исследование эффективности методов полиэдральной аппроксимации выпуклых тел. М.: Вычислительный центр РАН.
Kamenev, G.K. (2010) Numerical study of the effectiveness of methods for polyhedral approximation of convex bodies. Moscow: Computing Center of the Russian Academy of Sciences. (In Russ.). - Колмогоров, А.Н., Фомин, С.В. (2012) Элементы теории функций и функционального анализа. М.: Физматлит.
Kolmogorov, A.N., Fomin, S.V. (2012) Elements of function theory and functional analysis. Moscow: Fizmatlit. (In Russ.). - Рокафеллар, Р. (1973) Выпуклый анализ. М.: Мир.
Rokafellar, R. (1973) Convex analysis. Moscow: Mir. (In Russ.). - Ибрагимов, Д.Н., Осокин, А.В., Сиротин, А.Н., Сыпало, К.И. (2022) О свойствах предельных множеств управляемости для класса неустойчивых линейных систем с дискретным временем и ограничениями. Известия РАН. Теория и системы управления. (4), 3–21. https://doi.org/10.31857/S0002338822040102
Ibragimov, D.N., Osokin, A.V., Sirotin, A.N., Sypalo, K.I. (2022) On the Properties of the Limit Control Sets for a Class of Unstable Linear Systems with Discrete Time and Restrictions. Journal of Computer and Systems Sciences International. 61 (4), 467–484. https://doi.org/10.1134/S1064230722040104 - Ибрагимов, Д.Н. (2024) О решении задачи быстродействия для линейной системы с дискретным временем и суммарным ограничением на векторное управление. B: SCDG (с. 137-141).
Ibragimov, D.N. (2024) On the Solution to the Speed-in-Action Problem for a Linear Disrete-Time System with Summary Constraint on Vector Control. In: SCDG2024. (pp. 137-141). - Циглер, Г.М. (2014) Теория многогранников. М.: МЦНМО.
Tsigler, G.M. (2014) Theory of polyhedron. Moscow: MTSNMO. (In Russ.).
Information About the Authors
Metrics
Web Views
Whole time: 95
Previous month: 37
Current month: 6
PDF Downloads
Whole time: 20
Previous month: 2
Current month: 0
Total
Whole time: 115
Previous month: 39
Current month: 6