Modelling and Data Analysis
2025. Vol. 15, no. 4, 104–121
doi:10.17759/mda.2025150407
ISSN: 2219-3758 / 2311-9454 (online)
Analysis of the complexity of the algorithm for solving the time-optimization problem for linear discrete-time systems with linear constraints
Abstract
This paper is devoted to analysis of the complexity of the algorithm for solving time-optimization problems for linear discrete-time systems with linear constraints. An algorithm is proposed that uses the construction of null-controllable sets and the calculation of the Minkowski functional. An analytical upper bound for the computational complexity is obtained for the algorithm. Numerical calculations are also performed. The results show that the time required to solve the time-optimization problem depends significantly on the system parameters: with increasing dimension of the state vector and the description complexity of the set of control constraints, the computational costs increase exponentially. It is found that for relatively small state space dimension, the algorithm executes in an acceptable time, but further increases in dimension lead to an increase in computational time. This corresponds to the theoretical complexity estimate and confirms the validity of the chosen approach.
General Information
Keywords: optimal control, time-optimization problem, convex hull, linear programming problem, computational complexity
Journal rubric: Numerical Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2025150407
Received 24.10.2025
Revised 10.11.2025
Accepted
Published
For citation: Kamchiev, N.A., Ibragimov, D.N. (2025). Analysis of the complexity of the algorithm for solving the time-optimization problem for linear discrete-time systems with linear constraints. Modelling and Data Analysis, 15(4), 104–121. (In Russ.). https://doi.org/10.17759/mda.2025150407
© Kamchiev N.A., Ibragimov D.N., 2025
License: CC BY-NC 4.0
References
- Беллман, Р. (1960). Динамическое программирование. М.: ИИЛ.
Bellman, R. (1960). Dynamic programming. Moscow: IIL. (In Russ.). - Ибрагимов Д.Н., Кибзун А.И. (2025). Программная реализация алгоритмов решения задачи быстродействия для линейных систем с дискретным временем. Вестник компьютерных и информационных технологий, 22(3), 12–20. 10.14489/vkit.2025.03.pp.012-020
Ibragimov D.N., Kibzun A.I. (2025). Software implementation of algorithms for solving the performance problem for linear discrete-time systems. Herald of Computer and Information Technologies (Russia), 22(3), 12–20. 10.14489/vkit.2025.03.pp.012-020 (In Russ.). - Ибрагимов Д.Н., Новожилкин Н.М., Порцева Е.Ю. (2021). О достаточных условиях оптимальности гарантирующего управления в задаче быстродействия для линейной нестационарной дискретной системы с ограниченным управлением. АиТ, (12), 48–72. 10.1134/S000511792112002X
Ibragimov, D.N., Novozhilin, N.M., Portseva, E.Y. (2021). On Sufficient Optimality Conditions for a Guaranteed Control in the Speed Problem for a Linear Time-Varying Discrete-Time System with Bounded Control. Autom Remote Control, (82), 2076–2096. https://doi.org/10.1134/S000511792112002X - Ибрагимов Д.Н., Сиротин А.Н. (2017). О задаче быстродействия для класса линейных автономных бесконечномерных систем с дискретным временем и ограниченным управлением. АиТ, (10), 3–32. 10.1134/S0005117917100010
Ibragimov, D.N., Sirotin, A.N. (2017). On the problem of operation speed for the class of linear infinite-dimensional discrete-time systems with bounded control. Autom Remote Control, (78), 1731–1756. https://doi.org/10.1134/S0005117917100010 - Краснощеченко В.И. (2014). Симплекс-метод для решения задачи быстродействия при наличии ограничения на скалярное управление и фазовых ограничений. Инженерный журнал: наука и инновании. (6). URL: http://engjournal.ru/catalog/it/asu/1252.html
Krasnoshchechenko V.I. (2014). The simplex method for solving the performance problem with scalar control and state constraints. Engineering Journal: Science and Innovation (Russia), (6). URL: http://engjournal.ru/catalog/it/asu/1252.html (In Russ.). - Мороз А.И. (1965). Синтез оптимального по быстродействию управления для линейного дискретного объекта третьего порядка. I. АиТ, 26(2), 193–207.
Moroz A.I. (1965). Synthesis of time-optimal control for a third-order linear discrete object. I.. Automation and Remote Control (Russia), 26(2), 193–207. (In Russ.). - Мороз А.И. (1965). Синтез оптимального по быстродействию управления для линейного дискретного объекта третьего порядка. АиТ, 26(3), 410–426.
Moroz A.I. (1965). Synthesis of time-optimal control for a third-order linear discrete object. II.. Automation and Remote Control (Russia), 26(3), 410–426. (In Russ.). - Мороз А.И. (1965). Синтез оптимального по быстродействию управления для линейного дискретного объекта третьего порядка. АиТ, 26(8), 1324–1335
Moroz A.I. (1965). Synthesis of time-optimal control for a third-order linear discrete object. III.. Automation and Remote Control (Russia), 26(8), 1324–1335. (In Russ.). - Пропой А.И. (1973). Элементы теории оптимальных дискретных процессов. М.: Наука.
Propoy A.I. (1973). Elements of the theory of optimal discrete processes. Moscow: Nauka. (In Russ.). - Сазанова Л.А. (2002). Устойчивость оптимального синтеза в задаче быстродействия. Известия вузов. Математика, (2), 46–57.
Sazanova L.A. (2002). Stability of optimal synthesis in the performance problem. University Proceedings. Mathematics (Russia), (2), 46–57. (In Russ.). - Схрейвер А. (1991). Теория линейного и целочисленного программирования. М.: Мир.
Schrijver A. (1986). Theory of Linear and Integer Programming. England: John Wiley & Sons Ltd. - Abdelhak A., Rachik M. (2010). The Linear Quadratic Minimum-Time Problem for a Class of Discrete Systems. Math. Programming and Operations Research, 59(4), 575–587. 10.1080/02331930801954672
- Amato F., Cosentino C., Tommasi G. D., Pironti A., Romano M. (2022). Input–Output Finite-Time Stabilization of Linear Time-Varying DiscreteTime Systems. IEEE Transactions on Automatic Control, 67(9), 4438–4450. 10.1109/TAC.2022.3161374
- Barber C. B., Dobkin D. P., Huhdanpaa H. (1996). The Quickhull Algorithm for Convex Hulls. ACM Transactions on Mathematical Software. 10.1145/235815.235821
- Bashein G. (1971). A Simplex Algorithm for On-Line Computation of Time Optimal Controls. IEEE Transactions on Automatic Control, 16(5), 479–482. 10.1109/TAC.1971.1099776
- Blanchini F. (1991). Polyhedral Set Constrained Control for Discrete-Time Systems with Unknown Additive Disturbances. IFAC Proceedings Volumes. 24(8), 95–100. 10.1016/s1474-6670(17)54151-8
- Blanchini F., Ukovich W. (1993). Linear Programming Approach to the Control of Discrete-Time Periodic Systems with Uncertain Inputs. Journal of Optimization Theory and Applications, 78(3), 523–539. 1007/bf00939880
- Chen D., Bako L., Lecoeuche S. (2012). The Minimum-Time Problem for Discrete-Time Linear Systems: A Non-Smooth Optimization Approach. Proceedings of the IEEE International Conference on Control Applications, 196–201. 10.1109/CCA.2012.6402693
- Desoer C.A., Wing J. (1961). The Minimal Time Regulator Problem for Linear Sampled-Data Systems: General Theory. Franklin Inst, 272(3), 208–228. 10.1016/0016-0032(61)90784-0
- Karmarkar N. (1984). A new polynomial-time algorithm for linear programming.
- Keerthi S., Gilbert E. (1987). Computation of Minimum-Time Feedback Control Laws for Discrete-Time Systems with State-Control Constraints. IEEE Transactions on Automatic Control, 32(5), 432–435. 10.1109/tac.1987.1104625
- Khachiyan L. G. (1980). Polynomial algorithms in linear programming. S.S.R. Cornput. Maths. Math. Phys, 20(1), 53–72. https://doi.org/10.1016/0041-5553(80)90061-0
- Kolev L.V. (1978). Minimum-Fuel Minimum-Time Control of Linear Discrete Systems. International Journal of Control, 27(1), 21–29. 10.1080/00207177808922344
- Lasserre J.B. (1993). Reachable, Controllable Sets and Stabilizing Control of Constrained Linear Systems. Automatica, 29(2), 531–536. 1016/0005-1098(93)90152-J
- Lee J., Haddad W.M. (2022). Fixed Time Stability and Optimal Stabilisation of Discrete Autonomous Systems. International Journal of Control, 96(9), 2341–2355. 1080/00207179.2022.2092557
- Leomanni M., Costante G., Ferrante F. (2022). Time-Optimal Control of a Multidimensional Integrator Chain With Applications. IEEE Control Systems Letters, 6, 2371–2376. 1109/LCSYS.2022.3154351
- Lin W.-S. (1986). Time-Optimal Control Strategy for Saturating Linear Discrete Systems. J. Control, 43(5), 1343–1351. 10.1080/00207178608933543
- Lini G., Consolini L., Piazzi A. (2009). Minimum-Time Constrained Velocity Planning. IEEE 2009 17th Mediterranean Conference on Control and Automation, 748–753. 10.1109/med.2009.5164633
- Scott M. (1986). Time/Fuel Optimal Control of Constrained Linear Discrete Systems. Automatica, 22(6), 711–715. 1016/0005- 1098(86)90008-7
- Stamnes O.N., Callafon R.A. (2007). Time-Optimal Input Shaping for DiscreteTime LTI Systems with Application to Seek Profiles of a HDD System. ASME ISPS Conf, 146–148.
- Vlieger J.H., Verbruggen H.B., Bruijn P.M. (1982). A Time-Optimal Control Algorithm for Digital Computer Control. Automatica, 18(2), 239–244. 1016/0005-1098(82)90111-x
- Weibel C. (2007). Minkowski sums of polytopes: combinatorics and computation. Suisse: EPFL. 10.5075/epfl-thesis-3883
- Yang H., Xia Y., Geng Q. (2019). Stabilization on Null Controllable Region. In: Analysis and Synthesis of Delta Operator Systems with Actuator Saturation. Studies in Systems, Decision and Control, 193, 39–65. 10.1007/978-981-13-3660-7_3
Information About the Authors
Conflict of interest
The author declare no conflict of interest.
Metrics
Web Views
Whole time: 5
Previous month: 0
Current month: 5
PDF Downloads
Whole time: 2
Previous month: 0
Current month: 2
Total
Whole time: 7
Previous month: 0
Current month: 7