Modelling and Data Analysis
2025. Vol. 15, no. 3, 148–160
doi:10.17759/mda.2025150309
ISSN: 2219-3758 / 2311-9454 (online)
Formation of adaptive learning trajectories in computer systems based on Markov representations
Abstract
Context and relevance. The development of digital systems provides new opportunities for automating the educational process in secondary schools and higher education institutions. The modern organization of educational activities does not always allow for the precise identification of gaps in knowledge when solving problems based on previously learned didactic materials. This article presents a mechanism for forming an adaptive learning trajectory in computer systems based on Markov representations to solve problems of individualizing the educational process and identifying gaps in previously covered educational materials. Objective. Development of a mechanism for forming an adaptive learning trajectory for individualizing the process of mastering mathematical material in computer systems based on Markov representations. Hypothesis. An adaptive learning path will allow for the individualization of the learning process and the automated identification of gaps in students' knowledge of previously covered material. Methods and materials. The mathematical basis for forming an adaptive learning trajectory is a Markov process with a discrete number of states and continuous time. To create a bank of tasks, errors, and hints, we used mathematics teaching materials from the first to fourth grades of elementary school. Results. The study presented a mechanism for forming an adaptive learning trajectory in computer systems based on Markov models, which allows automating the process of identifying gaps in students' knowledge by providing tasks that correspond to the current individual level of preparation of each student. Conclusions. The developed mechanism allows teachers to automate the monitoring of student performance, using the system as an assistant to identify gaps in knowledge when solving problems related to previously covered topics.
General Information
Keywords: adaptive learning, individualized learning, learning trajectory, Markov process, artificial intelligence, information system
Journal rubric: Software
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2025150309
Received 11.08.2025
Revised 25.08.2025
Accepted
Published
For citation: Katyshev, D.A. (2025). Formation of adaptive learning trajectories in computer systems based on Markov representations. Modelling and Data Analysis, 15(3), 148–160. (In Russ.). https://doi.org/10.17759/mda.2025150309
© Katyshev D.A., 2025
License: CC BY-NC 4.0
References
- Ермаков, С.С., Савенков, Е.А., Шепелева, Е.А. (2023). Анализ возможностей компьютеризированного адаптивного подхода к задачам психологической диагностики и обучения. Экспериментальная психология, 16(3), 182–196. https://doi.org/10.17759/exppsy.2023160312
Ermakov, S.S., Savenkov, E.A., Shepeleva, E.A. (2023). Analysis the Possibilities of the Computerized Adaptive Approach to the Problems of Psychological Diagnostics and Training. Experimental Psychology (Russia), 16(3), 182–196. (In Russ.). https://doi.org/10.17759/exppsy.2023160312 - Куравский, Л.С., Поминов, Д.А., Юрьев, Г.А., Юрьева, Н.Е., Сафронова, М.А., Куланин, Е.Д., Антипова, С.Н. (2021). Концепция адаптивного тренажера и оценка его эффективности в математическом обучении. Моделирование и анализ данных, 11(4), 5–20. https://doi.org/10.17759/mda.2021110401
Kuravsky, L.S., Pominov, D.A., Yuryev, G.A., Yuryeva, N.E., Safronova, M.A., Kulanin, Y.D., Antipova, S.N. (2021). The Concept of an Adaptive Trainer and Assessing Its Effectiveness in a Mathematical Application. Modelling and Data Analysis, 11(4), 5–20. https://doi.org/10.17759/mda.2021110401 - Поминов, Д.А. (2020). Модель процесса адаптивного обучения и его программная реализация. Моделирование и анализ данных, 10(3), 39–52. https://doi.org/10.17759/mda.2020100303
Pominov, D.A. (2020). Model of Adaptive Learning and His Implementation. Modelling and Data Analysis, 10(3), 39–52. (In Russ.). https://doi.org/10.17759/mda.2020100303 - Ксемидов, Б.С., Абгарян, К.К. (2024). Адаптивная интеллектуальная обучающая система. Моделирование и анализ данных, 14(2), 152–165. https://doi.org/10.17759/mda.2024140211
Ksemidov, B.S., Abgaryan, K.K. (2024). Adaptive Intelligent Tutoring System. Modelling and Data Analysis, 14(2), 152–165. (In Russ.). https://doi.org/10.17759/mda.2024140211 - Куравский, Л.С., Марголис, А.А., Мармалюк, П.А., Панфилова, А.С., Юрьев, Г.А. (2016). Математические аспекты концепции адаптивного тренажера. Психологическая наука и образование, 21(2), 84–95. https://doi.org/10.17759/pse.2016210210
Kuravsky, L.S., Margolis, A.A., Marmalyuk, P.A., Panfilova, A.S., Yuryev, G.A. (2016). Mathematical Aspects of the Concept of Adaptive Training Device. Psychological Science and Education, 21(2), 84–95. (In Russ.). https://doi.org/10.17759/pse.2016210210 - Кравченко, Д.А., Блескина, И.А., Каляева, Е.Н., Землякова, Е.А., Аббакумов, Д.Ф. (2020). Персонализация в образовании: от программируемого к адаптивному обучению. Современная зарубежная психология, 9(3), 34–46. https://doi.org/10.17759/jmfp.2020090303
Kravchenko, D.A., Bleskina, I.A., Kalyaeva, E.N., Zemlyakova, E.A., Abbakumov, D.F. (2020). Personalization in education: from programmed to adaptive learning. Journal of Modern Foreign Psychology, 9(3), 34–46. (In Russ.). https://doi.org/10.17759/jmfp.2020090303 - Амелина Ю.М. Оптимизация образовательного процесса: интеграция цифровых образовательных технологий с применением научно обоснованных методов преподавания // Цифровая гуманитаристика и технологии в образовании (DHTE 2023): сб. статей IV Международной научно-практической конференции. 16–17 ноября 2023 г. | Digital Humanities and Technology in Education (DHTE 2023): Сollection of Articles of the IV International Scientific and Practical Conference. November 16–17, 2023. / Под ред. В.В. Рубцова, М.Г. Сороковой, Н.П. Радчиковой. – Москва : ФГБОУ ВО МГППУ, 2023. С. 616–632.
Amelina Y.M. Optimizing the Educational Process: Integrating Digital Educational Technologies with Evidence-Based Teaching Methods. Digital Humanities and Technology in Education (DHTE 2023), pp. 616–632. - Казанцева О.Г. Персонализированное обучение студентов: результаты эмпирического исследования // Цифровая гуманитаристика и технологии в образовании (DHTE 2024): сб. статей V международной научно-практической конференции. 14—15 ноября 2024 г. / Под ред. В.В. Рубцова, М.Г. Сороковой, Н.П. Радчиковой М.: Издательство ФГБОУ ВО МГППУ, 2024. С. 116–126.
Kazantseva O.G. Personalized Learning for Students: Results of an Empirical Study. Digital Humanities and Technology in Education (DHTE 2024): Collection of Articles of the V International Scientific and Practical Conference. November 14-15, 2024 / V.V. Rubtsov, M.G. Sorokova, N.P. Radchikova (Eds). Moscow: Publishing house MSUPE, 2024., pp. 116–126. - Широколобова А.Г. Платформенные образовательные решения как инструмент цифровой дидактики // Цифровая гуманитаристика и технологии в образовании (DHTE 2024): сб. статей V международной научно-практической конференции. 14—15 ноября 2024 г. / Под ред. В.В. Рубцова, М.Г. Сороковой, Н.П. Радчиковой М.: Издательство ФГБОУ ВО МГППУ, 2024. С. 249–259.
Shirokolobova A.G. Platform Educational Solutions as a Tool of Digital Didactics. Digital Humanities and Technology in Education (DHTE 2024): Collection of Articles of the V International Scientific and Practical Conference. November 14-15, 2024 / V.V. Rubtsov, M.G. Sorokova, N.P. Radchikova (Eds). Moscow: Publishing house MSUPE, 2024., pp. 249–259. - Артеменков С. Л. и др. (2017). Марковские модели в задачах диагностики и прогнозирования: Учебное пособие. / Под ред. Л.С. Куравского. – 2-е изд. доп. М.: Изд-во МГППУ. 203 с.
Artemenkov S. L. i dr. (2017). Markov Models in Diagnostics and Forecasting Problems: Textbook. / Pod red. L.S. Kuravskogo. – 2-e izd. dop. M.: Izd-vo MGPPU. 203 s. - Куравский, Л.С., Артеменков, С.Л., Юрьев, Г.А., Григоренко, Е.Л. (2017). Новый подход к компьютеризированному адаптивному тестированию. Экспериментальная психология, 10(3), 33–45. https://doi.org/10.17759/exppsy.2017100303
Kuravsky, L.S., Artemenkov, S.L., Yuryev, G.A., Grigorenko, E.L. (2017). A new approach to computerized adaptive testing. Experimental Psychology (Russia), 10(3), 33–45. https://doi.org/10.17759/exppsy.2017100303 - Куравский, Л.С., Юрьев, Г.А., Юрьева, Н.Е., Исаков, С.С., Несимова, А.О., Николаев, И.А. (2022). Адаптивная технология психологической диагностики на основе марковских и квантовых представлений процесса выполнения заданий. Моделирование и анализ данных, 12(4), 36–55. https://doi.org/10.17759/mda.2022120403
Kuravsky, L.S., Yuryev, G.A., Yuryeva, N.E., Isakov, S.S., Nesimova, A.O., Nikolaev, I.A. (2022). Adaptive Technology of Psychological Diagnostics Based on the Markovian and Quantum Representations of the Task Performing Process. Modelling and Data Analysis, 12(4), 36–55. (In Russ.). https://doi.org/10.17759/mda.2022120403
Information About the Authors
Contribution of the authors
Dmitry A. Katyshev — development of a mechanism for forming an adaptive learning trajectory; testing; annotation, writing, and formatting of the manuscript.
All authors participated in the discussion of the results and approved the final text of the manuscript.
Conflict of interest
The authors declare no conflict of interest
Metrics
Web Views
Whole time: 102
Previous month: 43
Current month: 5
PDF Downloads
Whole time: 26
Previous month: 6
Current month: 1
Total
Whole time: 128
Previous month: 49
Current month: 6