Neural Network Technologies for Predicting Student Learning Achievement within eLearning Environment of the HEI
Abstract
General Information
Keywords: neural networks, predicting of learning achievement, educational results, eLearning environment, students, HEI
Article type: scientific article
For citation: Toktarova V.I., Kazantseva O.G., Shashkov O.V. Neural Network Technologies for Predicting Student Learning Achievement within eLearning Environment of the HEI. Digital Humanities and Technology in Education (DHTE 2022): Collection of Articles of the III All-Russian Scientific and Practical Conference with International Participation. November 17-18, 2022 / V.V. Rubtsov, M.G. Sorokova, N.P. Radchikova (Eds). Moscow: Publishing house MSUPE, 2022., pp. 388–398.
References
- Pasport federal'nogo proekta «Kadry dlya tsifrovoi ekonomiki» [Elektronnyi resurs] [Passport of the federal project "Personnel for the Digital Economy"]. Tsifrovaya ekonomika 2024 [Digital Economy 2024]. URL: https://digital.ac.gov.ru/poleznaya-informaciya/material/Паспорт-федерального-проекта-Кадры-для-цифровой-экономики.pdf (Accessed: 04.08.2022).
- Pozdneev B.M., Kabak I.S., Sukhanova N.V. Kontrol' znanij studentov na osnove nejronnyh setej [Control of students' knowledge based on neural networks]. Otkrytoe obrazovanie = Open Education, 2011, no. 6, pp.17-20. (In Russ., Abstr. in Engl.).
- Rusakov S.V., Rusakova O.L., Posokhina K.A. Neirosetevaya model' prognozirovaniya gruppy riska po uspevaemosti studentov pervogo kursa [A neural network model for predicting a risk group based on the progress of first-year students]. Sovremennye informatsionnye tekhnologii i IT-obrazovanie = Modern information technologies and IT education, 2018, no. 4, pp. 815-822. (In Russ., Abstr. in Engl.).
- Ukaz Prezidenta RF ot 09.05.2017 g. №203 «O Strategii razvitiya informatsionnogo obshchestva v Rossiiskoi Federatsii na 2017–2030 gody» [Elektronnyi resurs] [Decree of the President of the Russian Federation of May 9, 2017 No. 203 “On the Strategy for the Development of the Information Society in the Russian Federation for 2017–2030”]. Prezident Rossii [President of Russia]. URL: http://www.kremlin.ru/acts/bank/41919 (Accessed: 08.04.2022).
- Yasinskii I. F., Semenova M. B. Opyt prognozirovaniya uspevaemosti studentov pri pomoshchi neirosetevoi tekhnologii [The experience of students' progress forecasting using neuronet technology]. Vestnik IGEU = Vestnik of Ivanovo State Power Engineering University, 2007, no.4. pp. 29-31. (In Russ., Abstr. in Engl.).
- Okubo F. et al. A neural network approach for students' performance prediction. The Seventh International Learning Analytics & Knowledge Conference, 2017, pp. 598-599. doi: 10.1145/3027385.3029479
- Toktarova V.I. Pedagogical management of learning activities of students in the electronic educational environment of the university: a differentiated approach. International Education Studies, 2015, vol. 8, no. 5, pp. 205-212. doi:10.5539/ies.v8n5p205
Information About the Authors
Metrics
Views
Total: 125
Previous month: 7
Current month: 0
Downloads
Total: 232
Previous month: 10
Current month: 2