Psychological, psychophysiological, and psychoendocrine foundations of decision-making

 
Audio is AI-generated
 2 min read
79

Abstract

Context and relevance. The relevance of the research is due to the absence of the fact that understanding decision-making processes, including in conditions of uncertainty and stress, is important both for fundamental psychology and for applied fields such as professional selection of specialists, assessment of their professional reliability and development of adaptive behavior strategies. In this study, modern models of neurophysiological, psychophysiological and psychoendocrine correlators of decision-making, cognitive and emotional components of the choice process, and features of these processes under the influence of stress and extreme factors were considered. The study of neurophysiological, psychophysiological, and psychological correlates of research acceptance mechanisms allows us to develop a specific methodology for studying these phenomena. The aim of the study is to systematize and analytically summarize empirical data on the interrelation of cognitive, emotional and physiological mechanisms underlying decision-making. Methods and materials. The study is an analytical review of the scientific literature. Results. The analysis of empirical data revealed that decision-making is determined not only by cognitive processes, but also by specific neurophysiological correlates, such as activity of the prefrontal and orbitofrontal cortex, as well as structures of the limbic system (amygdala and hippocampus). A significant relationship was found between changes in electroencephalographic rhythms (theta and beta ranges) and the behavior of the subjects, which indicates complex neural mechanisms that ensure decision-making. Significant gender and age differences have been established, as well as significant changes in autonomic parameters (heart rate variability, galvanic skin reaction) and biochemical parameters (cortisol and DHEA) in risky behavior. Conclusions. The results obtained emphasize the importance of integrating neurophysiological, psychophysiological, and psychoendocrine methods for further study of decision-making mechanisms.

General Information

Keywords: decision-making, psychology of decision-making, risky behavior, stress, psychophysiological mechanisms, neural correlates, psychoendocrine correlates

Journal rubric: Medical Psychology

Article type: review article

DOI: https://doi.org/10.17759/jmfp.2025140313

Received 01.04.2025

Revised 30.07.2025

Accepted

Published

For citation: Rozanov, I.A., Naumov, N.N. (2025). Psychological, psychophysiological, and psychoendocrine foundations of decision-making. Journal of Modern Foreign Psychology, 14(3), 152–141. (In Russ.). https://doi.org/10.17759/jmfp.2025140313

© Rozanov I.A., Naumov N.N., 2025

License: CC BY-NC 4.0

Full text

 
 
 
 

References

  1. Береснева, А.Ф., Изнак, Е.В. (2024). Нейрофизиологические корреляты эффективности принятия решений при депрессивных расстройствах. Психиатрия, 22(4(2)), 86—87. https://doi.org/10.30629/2618-6667-2024-22-4-2
    Beresneva, A.F., Iznak, E.V. Neurophysiological correlates of decision-making efficiency in depressive disorders. Psychiatry (Moscow), 22(4(2)), 86—87. (In Russ.). https://doi.org/10.30629/2618-6667-2024-22-4-2
  2. Булыгина, В.Г., Дубинский, А.А., Проничева, М.М., Ковалева, М.Е. (2018). Взаимосвязь ситуационного анализа и социальной апперцепции у сотрудников мобильного отряда особого назначения. Прикладная юридическая психология, 2(43), 52—58. URL: https://www.elibrary.ru/item.asp?id=35385322 (дата обращения: 04.09.2025).
    Bulygina, V.G., Dubinsky, A.A., Pronicheva, M.M., Kovaleva, M.E. (2018). The relationship between the situational analysis detachment and social apperceptions of special forces personnel. Applied Legal Psychology, 2(43), 52—58. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=35385322 (viewed: 04.09.2025).
  3. Карпов, А.В. (2025). Психология принятия решений в профессиональной деятельности: Учебник для вузов. М.: Юрайт.
    Karpov, A.V. (2025). Psychology of decision-making in professional activities: Textbook for universities. Moscow: Yurait. (In Russ.).
  4. Муртазина, Е.П., Матюлько, И.С., Журавлев, Б.В. (2020). Система поведенческого доминирования: Обзор психофизиологических особенностей и нейробиологических маркеров. Журнал медико-биологических исследований, 8(4), 427—441. https://doi.org/10.37482/2687-1491-Z036
    Murtazina, E.P., Matyulko, I.S., Zhuravlev, B.V. (2020). The dominance behavioural system: A review of psychophysiological features and neurobiological markers. Journal of Medical and Biological Research, 8(4), 427—441. (In Russ.). https://doi.org/10.37482/2687-1491-Z036
  5. Alacreu-Crespo, A., Costa, R., Molins, F., Abad-Tortosa, D., SanMiguel, N., Courtet, P., Serrano, M.Á. (2024). Do decision-making styles predict vagal control? The role of resting heart rate variability. Behavioral Sciences, 14(5), Article 369. https://doi.org/10.3390/bs14050369
  6. Balconi, M., Allegretta, R.A., Acconito, C., Saquella, F., Angioletti, L. (2025). The functional signature of decision making across dyads during a persuasive scenario: Hemodynamic fNIRS coherence measure. Sensors, 25(6), Article 1880. https://doi.org/10.3390/s25061880
  7. Bounoua, N., Joseph, J.E., Adams, Z.W., Crum, K.I., Sege, C.T., McTeague, L.M., Hajcak, G., Halliday, C.A., Danielson, C.K. (2024). Interpersonal violence moderates sustained-transient threat co-activation in the vmPFC and amygdala in a community sample of youth. Development and Psychopathology, 37, 2151–2160. https://doi.org/10.1017/S0954579424001743
  8. Broche-Pérez, Y., Jiménez, L.F.H., Omar-Martinez, E. (2016). Neural substrates of decision-making. Neurologia, 31(5), 319—325. https://doi.org/10.1016/j.nrleng.2015.03.009
  9. Bujarski, K.A., Song, Y., Xie, T., Leeds, Z., Kolankiewicz, S.I., Wozniak, G.H., Guillory, S., Aronson, J.P., Chang, L., Jobst, B.C. (2022). Modulation of emotion perception via amygdala stimulation in humans. Frontiers in Neuroscience, 15, Article 795318. https://doi.org/10.3389/fnins.2021.795318
  10. Bull, P.N., Tippett, L.J., Addis, D.R. (2015). Decision making in healthy participants on the Iowa Gambling Task: New insights from an operant approach. Frontiers in Psychology, 6, Article 391. https://doi.org/10.3389/fpsyg.2015.00391
  11. Corbo, I., Favieri, F., Forte, G., Casagrande, M. (2024). Decision-making under uncertainty in healthy and cognitively impaired aging: A systematic review and meta-analysis. Archives of Gerontology and Geriatrics, 129, Article 105643. https://doi.org/10.1016/j.archger.2024.105643
  12. da Cruz, J., Rodrigues, J., Thoresen, J.C., Chicherov, V., Figueiredo, P., Herzog, M.H., Sandi, C. (2018). Dominant men are faster in decision-making situations and exhibit a distinct neural signal for promptness. Cerebral Cortex, 28(10), 3740—3751. https://doi.org/1093/cercor/bhy195
  13. de Juan Ripoll, C., Chicchi Giglioli, I.A., Llanes-Jurado, J., Marín-Morales, J., Alcañiz, M. (2021). Why do we take risks? Perception of the situation and risk proneness predict domain-specific risk taking. Frontiers in Psychology, 12, Article 562381. https://doi.org/10.3389/fpsyg.2021.562381
  14. Dixon, M.L., Dweck, C.S. (2022). The amygdala and the prefrontal cortex: The co-construction of intelligent decision-making. Psychological Review, 129(6), 1414—1441. https://doi.org/10.1037/rev0000339
  15. Ellis, B.J., Del Giudice, M., Shirtcliff, E.A. (2017). The adaptive calibration model of stress responsivity: Concepts, findings, and implications for developmental psychopathology. In: T.P. Beauchaine, S.P. Hinshaw (Eds.), Child and adolescent psychopathology (pp. 237—276). Hoboken: Wiley. https://doi.org/10.1002/9781394258932.ch8
  16. Tanvir, F.A., Mazumder, P.K. (2025). Exploring the cognitive mechanisms behind decision-making: Insights from behavioral and neural studies. International Journal of Research Publication and Reviews, 6(4), 14344—14350.
  17. Fischhoff, B., Broomell, S.B. (2020). Judgment and decision making. Annual Review of Psychology, 71, 331—355. https://doi.org/10.1146/annurev-psych-010419-050747
  18. Formica, S., González-García, C., Senoussi, M., Marinazzo, D., Brass, M. (2022). Theta-phase connectivity between medial prefrontal and posterior areas underlies novel instructions implementation. eNeuro, 9(4), Article ENEURO.0225-22.2022. https://doi.org/10.1523/ENEURO.0225-22.2022
  19. Forte, G., Casagrande, M. (2020). Effects of blood pressure on cognitive performance in aging: A systematic review. Brain Sciences, 10(12), Article 919. https://doi.org/10.3390/brainsci10120919
  20. Forte, G., Casagrande, M. (2025). The intricate brain–heart connection: The relationship between heart rate variability and cognitive functioning, Neuroscience, 565, 369—376. https://doi.org/10.1016/j.neuroscience.2024.12.004
  21. Forte, G., Morelli, M., Grässler, B., Casagrande, M. (2021). Decision making and heart rate variability: A systematic review. Applied Cognitive Psychology, 36(1), 100—110. https://doi.org/1002/acp.3901
  22. Forte, G., Morelli, M., Casagrande, M. (2021). Heart rate variability and decision-making: Autonomic responses in making decisions. Brain Sciences, 11(2), Article 243. https://doi.org/10.3390/brainsci11020243
  23. Ge, J., Cai, Y., Pan, Z.Z. (2022). Synaptic plasticity in two cell types of central amygdala for regulation of emotion and pain. Frontiers in Cellular Neuroscience, 16, Article 997360. https://doi.org/10.3389/fncel.2022.997360
  24. Hubal, H., Fomina, I., Drozd, L., Arkhypova, T., Sobkova, S. (2024). Psychological aspects of the decision-making process: The influence of personal characteristics on choice strategies in the face of instability. [Aspectos Psicológicos do Processo de Tomada de Decisão: A Influência das Características Pessoais nas Estratégias de Escolha em Cenários de Instabilidade]. Brazilian Journal of Education, Technology and Society (BRAJETS) [Cadernos de Educação Tecnologia e Sociedade], 17(se5), 173—183. https://doi.org/10.14571/brajets.v17.nse5.173-183
  25. Aguirre, C.G., Woo, J.H., Romero-Sosa, J.L., Rivera, Z.M., Tejada, A.N., Munier J.J., J. Perez, Goldfarb, M., Das, K., Gomez, M., Ye, T., Pannu, J., Evans, K., O’Neill, P.R., Spigelman, I., Soltani, A., Izquierdo, A. (2024). Dissociable contributions of basolateral amygdala and ventrolateral orbitofrontal cortex to flexible learning under uncertainty. Journal of Neuroscience, 44(2), Article e0622232023. https://doi.org/10.1523/JNEUROSCI.0622-23.2023
  26. Fan, J., Gu, R., Lin, Y., Luo, Y. (2023). Event-related potentials in response to early terminated and completed sequential decision-making. International Journal of Psychophysiology, 189, 11—19. https://doi.org/10.1016/j.ijpsycho.2023.04.001
  27. Johnson, S.T., Grabenhorst, F. (2025). The amygdala and the pursuit of future rewards. Frontiers in Neuroscience, 18, Article 1517231. https://doi.org/10.3389/fnins.2024.1517231
  28. Liang, Z., Liao, X., Cai, H. (2022). The impact of specific psychological characteristics on decision-making under the different conditions of risk self-assessment. Frontiers in Psychology, 13, Article 779246. https://doi.org/10.3389/fpsyg.2022.779246
  29. Lockwood, P.L., Klein-Flügge, M.C., Abdurahman, A., Crockett, M.J. (2020). Model-free decision making is prioritized when learning to avoid harming others. Proceedings of the National Academy of Sciences, 117(44), 27719—27730. https://doi.org/10.1073/pnas.2010890117
  30. Maier, S.U., Hare, T.A. (2017). Higher Heart-Rate Variability Is Associated with Ventromedial Prefrontal Cortex Activity and Increased Resistance to Temptation in Dietary Self-Control Challenges. The Journal of Neuroscience, 37(2), 446—455. https://doi.org/10.1523/JNEUROSCI.2815-16.2017
  31. Malik, S., Singh, R., Arora, G., Dangol, A., Goyal, S. (2021). Biomarkers of major depressive disorder: Knowing is half the battle. Clinical Psychopharmacology and Neuroscience, 19(1), 12—25. https://doi.org/10.9758/cpn.2021.19.1.12
  32. May, C.L., Wisco, B.E. (2020). Reward processing and decision-making in posttraumatic stress disorder. Behavior Therapy, 51(5), 814—828. https://doi.org/10.1016/j.beth.2019.11.005
  33. Miquel, M., Nicola, S.M., Gil-Miravet, I., Guarque-Chabrera, J., Sanchez-Hernandez, A.A. (2019). A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Frontiers in behavioral neuroscience, 13, Article 99. https://doi.org/10.3389/fnbeh.2019.00099
  34. Miles, J.T., Mizumori, S.J.Y., Kidder, K.S., (2023). Hippocampal beta rhythms as a bridge between sensory learning and memory-guided decision-making. Frontiers in Systems Neuroscience, 17, Article 1187272. https://doi.org/10.3389/fnsys.2023.1187272
  35. Moreira, C. (2019). Unifying decision-making: A review on evolutionary theories on rationality and cognitive biases. In: J.A. de Barros, C. Montemayor (Eds.), Quanta and Mind: Essays on the Connection between Quantum Mechanics and Consciousness (pp. 235—248). Cham: Springer. https://doi.org/10.1007/978-3-030-21908-6_19
  36. Morelli, M., Casagrande, M., Forte, G. (2022). Decision making: A theoretical review. Integrative Psychological and Behavioral Science, 56, 609—629. https://doi.org/10.1007/s12124-021-09669-x
  37. Niendam, T.A., Laird, A.R., Ray, K.L., Dean, Y.M., Glahn, D.C., Carter, C.S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12, 241—268. https://doi.org/10.3758/s13415-011-0083-5
  38. Bakkour, A., Palombo, D.J., Zylberberg, A., Kang, Y.H.R., Reid, A., Verfaellie, M., Shadlen, M.N., Shohamy, D. (2019). The hippocampus supports deliberation during value-based decisions. ELife, 8, Article e46080. https://doi.org/10.7554/eLife.46080
  39. Porcelli, A.J., Delgado, M.R. (2017). Stress and decision making: Effects on valuation, learning, and risk-taking. Current Opinion in Behavioral Sciences, 14, 33—39. https://doi.org/10.1016/j.cobeha.2016.11.015
  40. Ramírez, E., Ortega, A.R., Del Paso, G.A.R. (2015). Anxiety, attention, and decision making: The moderating role of heart rate variability. International Journal of Psychophysiology, 98(3), 490—496. https://doi.org/10.1016/j.ijpsycho.2015.10.007
  41. Rivera, S.L.F., Gouveia, A. (2021). Neurotransmitters and Hormones in Human Decision-Making. In: P.Á. Gargiulo, H.L. Mesones-Arroyo (Eds.), Psychiatry and Neuroscience Update (pp. 149—167). Cham: Springer. https://doi.org/10.1007/978-3-030-61721-9
  42. Rolls, E.T. (2023). Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Structure and Function, 228, 1201—1257. https://doi.org/10.1007/s00429-023-02644-9
  43. Román, F.J., Colom, R., Hillman, C.H., Kramer, A.F., Cohen, N.J., Barbey, A.K. (2019). Cognitive and neural architecture of decision making competence. Neuroimage, 199, 172—183. https://doi.org/10.1016/j.neuroimage.2019.05.076
  44. Cao, R., Dubois, J., Mamelak, A.N., Adolphs, R., Wang, S., Rutishauser, U. (2024). Domain-specific representation of social inference by neurons in the human amygdala and hippocampus. Science Advances, 10(49), Article eado6166. https://doi.org/10.1126/sciadv.ado6166
  45. Saka, B., Yildirim, E. (2024). The effect of mood on risk taking: A systematic review. Current Psychology, 43, 29333—29345. https://doi.org/10.1007/s12144-024-06585-2
  46. Salamone, J.D., Correa, M. (2024). The neurobiology of activational aspects of motivation: exertion of effort, effort-based decision making, and the role of dopamine. Annual review of psychology, 75, 1—32. https://doi.org/10.1146/annurev-psych-020223-012208
  47. Baez, S., Patiño-Sáenz M., Santamaría-García, H., Martínez-Cotrina, J., Aponte, D.M., Caicedo, J.C., Pastor, D., González-Gadea, M.L., Haissiner, M., García, A.M., Ibáñez A. (2020). The impact of legal expertise on moral decision-making biases. Humanities and Social Sciences Communications, 7, Article 103. https://doi.org/10.1057/s41599-020-00595-8
  48. Santamaría-García, H., Burgaleta, M., Sebastián-Gallés, N. (2015). Neuroanatomical markers of social hierarchy recognition in humans: A combined ERP/MRI study. Journal of Neuroscience, 35(30), 10843—10850. https://doi.org/10.1523/JNEUROSCI.1457-14.2015
  49. Santos, L.R., Rosati, A.G. (2015). The evolutionary roots of human decision making. Annual Review of Psychology, 66, 321—347. https://doi.org/10.1146/annurev-psych-010814-015310
  50. Shalamberidze, T., Nash, K., Caplan, J.B. (2025). Rhythmic activity in resting-state EEG predicts trait anxiety. Imaging Neuroscience, 3, Article IMAG.a.44. https://doi.org/10.1162/IMAG.a.44
  51. Shi, H.J., Wang, S., Wang, X.P., Zhang, R.X., Zhu, L.J. (2023). Hippocampus: Molecular, cellular, and circuit features in anxiety. Neuroscience bulletin, 39(6), 1009—1026. https://doi.org/10.1007/s12264-023-01020-1
  52. Taherdoost, H., Madanchian, M., (2024). Decision making: Models, processes, techniques. Cloud Computing and Data Science, 5(1). https://doi.org/10.37256/ccds.5120243284
  53. Toledo, F., Carson, F. (2023). Neurocircuitry of personality traits and intent in decision-making. Behavioral Sciences, 13(5), Article 351. https://doi.org/10.3390/bs13050351
  54. Li, P., Wang, J., Liu Y. (2023). «The Last Shot» — the shared and distinct brain regions involved in processing unexpectedness of success and failure in the context of social cooperation. Social Cognitive and Affective Neuroscience, 18(1), Article nsac049. https://doi.org/10.1093/scan/nsac049
  55. Wood, E.E., Garza, R., Kennison, S.M., Byrd-Craven, J. (2021). Parenting, cortisol, and risky behaviors in emerging adulthood: Diverging patterns for males and females. Adaptive Human Behavior and Physiology, 7, 114—132. https://doi.org/10.1007/s40750-021-00164-6
  56. Zhen, S., Yaple, Z.A., Eickhoff, S.B., Yu, R. (2022). To learn or to gain: Neural signatures of exploration in human decision-making. Brain Structure and Function, 227, 63—76. https://doi.org/10.1007/s00429-021-02389-3
  57. Zhang, X., Mukherjee, A., Halassa, M.M., Chen, Z.S. (2025). Mediodorsal thalamus regulates task uncertainty to enable cognitive flexibility. Nature Communications, 16, Article 2640. https://doi.org/10.1038/s41467-025-58011-1
  58. Zhang, Y., Zhang, M., Wang, L., Zheng, Y., Li, H., Xie, Y., Lv, X., Yu, X., Wang, H. (2024). Attenuated neural activity in processing decision-making feedback in uncertain conditions in patients with mild cognitive impairment. European Archives of Psychiatry and Clinical Neuroscience, 1—14. https://doi.org/10.1007/s00406-024-01793-0

   

Information About the Authors

Ivan A. Rozanov, Candidate of Science (Medicine), Senior Science Researcher of the Laboratory of Psychohygiene and Psychoprophylaxis, V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0002-2607-8848, e-mail: exelbar@yandex.ru

Nikita N. Naumov, Research Assistant at the Laboratory of Psychohygiene and Psychoprevention, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russian Federation, ORCID: https://orcid.org/0009-0004-1560-2490, e-mail: niknaum2003@yandex.ru

Contribution of the authors

Rozanov I. A. — annotation and writing; research planning; supervision of the study.
Naumov N. N. — research idea; manuscript formatting and editing; conclusion; bibliography compilation.
All authors participated in the discussion of the results and approved the final text of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Metrics

 Web Views

Whole time: 263
Previous month: 109
Current month: 15

 PDF Downloads

Whole time: 79
Previous month: 21
Current month: 7

 Total

Whole time: 342
Previous month: 130
Current month: 22