Development of a prototype system based on Markov representations to support the learning process in elementary school

 
Audio is AI-generated
41

Abstract

Context and relevance. Individualization of the learning process is the most important task of modern pedagogy, especially in primary education, where basic mathematical skills are formed. The existing class-lesson system often does not allow to promptly identify and correct individual errors of students. The author's proposed development of an adaptive digital system based on Markov models is aimed at solving this problem. Objective. Development of a prototype of a digital educational system to support individualized learning process of mathematics in elementary school. Hypothesis. An adaptive system based on Markov processes with discrete states and continuous time can increase the efficiency of individualized learning and improve students' mathematical skills. Methods and materials. The study developed a web application that uses Markov processes to assess elementary school students' mathematical knowledge and skills. The system offers tasks with predefined answer choices, captures errors, generates error-appropriate prompts, and adapts task difficulty based on student progress. Results. A prototype of a digital system is presented, which allows effectively detecting and correcting typical errors of elementary school students in solving mathematical problems, providing an individualized approach to teaching and reducing the teacher's workload. Conclusions. The developed system provides opportunities for increasing individualization of learning and quality of mathematics education in elementary school. Further expansion of the system functionality is recommended, including integration of additional analytical modules and adaptation to other educational subjects and age groups.

General Information

Keywords: adaptive learning, individualization of learning, Markov process, artificial intelligence, information system

Journal rubric: Software

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2025150211

Received 25.05.2025

Accepted

Published

For citation: Katyshev, D.A. (2025). Development of a prototype system based on Markov representations to support the learning process in elementary school. Modelling and Data Analysis, 15(2), 177–191. (In Russ.). https://doi.org/10.17759/mda.2025150211

© Katyshev D.A., 2025

License: CC BY-NC 4.0

References

  1. Mangarin R. A., & Caballes, D. O. (2024). Difficulties in Learning Mathematics: A Systematic Review. International Journal of Research and Scientific Innovation, XI(IX). С. 401–405. DOI: 51244/ijrsi.2024.1109037
  2. Václavíková Z. (2023). The Most Common Mathematical Mistakes in the Teaching of Scientific Subjects at Secondary Schools. Springer Nature. 181-193. DOI:1007/978-3-031-36375-7_12
  3. Соколов В.Л. (2023). Психолого-педагогические приемы работы над ошибками младших школьников при освоении математических понятий. Вестник практической психологии образования. 20(1), С. 46–60. DOI:17759/bppe.2023200105
    Sokolov V.L. (2023). Psychological and pedagogical methods of working on errors of junior schoolchildren in mastering mathematical concepts. Vestnik prakticheskoi psikhologii obrazovaniya = Bulletin of Practical Educational Psychology.  20(1), S. 46–60.  DOI:10.17759/bppe.2023200105
  4. Kusmaryono I., Ubaidah N., Ulya N., & Kadarwati S.(2019). Have teachers never been wrong? Case studies of misconceptions in teaching mathematics in elementary schools. // Daya Matematis: Jurnal Inovasi Pendidikan Matematika. 7(2), 209–218. DOI:26858/JDS.V7I2.9817
  5. Dias R. I., Andrade R. P., Neves O. dos S., Santos D. de S., Bastos A. R. da S., Jesus B. R. de, Rocha M. E. de S. B., Borges D. D., Vieira F. de soisa, Correia C. A., Costa M. G. da, & Lins A. V. (2023). Ensino individualizado: adaptar o ensino de acordo com as necessidades individuais de cada aluno, oferecendo instruções claras, organização e estruturação das tarefas, e feedback específico e imediato. Brazilian Journal of Implantology and Health Sciences. DOI:10.36557/2674-8169.2023v5n5p2177-2184
  6. Bang H. J., et al. (2023). Efficacy of an Adaptive Game-Based Math Learning App to Support Personalized Learning and Improve Early Elementary School Students' Learning. Early Childhood Education Journal. [URL: https://link.springer.com/article/10.1007/s10643-022-01332-3]
  7. Semenovska L., Vazhenina I., Fazan V. (2023). Individualization of learning as a development actuality information technological society. Педагогічні Науки. 82, 30–34. DOI: 10.33989/2524-2474.2023.82.295073
  8. Saadawi H. A. S. (2025). Individualization of teaching and self-learning strategies. «Арид» Международный журнал педагогических и психологических наук (مجلة اريد الدولية للعلوم التربوية والنفسية). С. 14–50. DOI: 10.36772/arid.aijeps.2024.5121
    Saadawi H. A. S. Individualization of teaching and self-learning strategies. «Arid» Mezhdunarodnyi zhurnal pedagogicheskikh i psikhologicheskikh nauk (مجلة اريد الدولية للعلوم التربوية والنفسية), 2025. 14–50. DOI: 10.36772/arid.aijeps.2024.5121
  9. Куравский Л. С., Поминов Д. А., Юрьев Г. А., Юрьева Н. Е., Сафронова М. А., Куланин Е. Д., Антипова, С. Н. (2021). Концепция адаптивного тренажера и оценка его эффективности в математическом обучении. Моделирование и анализ данных. 11(4), 5-20. DOI: https://doi.org/10.17759/mda.2021110401
    Kuravskii L. S., Pominov D. A., Yur'ev G. A., Yur'eva N. E., Safronova M. A., Kulanin E. D., Antipova, S. N.  (2021). The concept of adaptive simulator and evaluation of its effectiveness in mathematical learning. Modelirovanie i analiz dannykh = Data modeling and analysis. 11(4), 5-20. DOI: https://doi.org/10.17759/mda.2021110401
  10. Иванова С. В. (2019). Формирование навыков работы над ошибками у младших школьников на уроках математики. Начальная школа плюс До и После. (5), С. 23– [URL: https://cyberleninka.ru/article/n/formirovanie-navykov-raboty-nad-oshibkami-u-mladshih-shkolnikov-na-urokah-matematiki]
    Formation of error work skills in junior schoolchildren at mathematics lessons. Nachal'naya shkola plyus Do i Posle. = Primary School Plus Before and After 2019. (5), S. 23–27. [URL: https://cyberleninka.ru/article/n/formirovanie-navykov-raboty-nad-oshibkami-u-mladshih-shkolnikov-na-urokah-matematiki]
  11. Ashlock R. B. (2002). Error patterns in computation: Using error patterns to improve instruction. Pearson. с. 302.
  12. Артеменков С. Л. и др. (2017). Марковские модели в задачах диагностики и прогнозирования: Учебное пособие. / Под ред. Л.С. Куравского. – 2-е изд. доп. М.: Изд-во МГППУ. 203 с.
    Artemenkov S. L. i dr. (2017). Markov Models in Diagnostics and Forecasting Problems: Textbook. / Pod red. L.S. Kuravskogo. – 2-e izd. dop. M.: Izd-vo MGPPU. 203 s.
  13. Куравский Л. С., Юрьев Г. А., Юрьева Н. Е., Исаков С. С., Несимова А. О., Николаев И. А. (2022). Адаптивная технология психологической диагностики на основе марковских и квантовых представлений процесса выполнения заданий.Моделирование и анализ данных. 12(4), 36–55.
    Kuravskii L. S., Yur'ev G. A., Yur'eva N. E., Isakov S. S., Nesimova A. O., Nikolaev I. A. (2022). Adaptive technology of psychological diagnostics on the basis of Markovian and quantum representations of the task performance process. Modelirovanie i analiz dannykh = Data modeling and analysis. 12(4), C. 36–55.
  14. Куравский Л.С., Артеменков С.Л., Юрьев Г.А., Григоренко Е.Л. (2017). Новый подход к компьютеризированному адаптивному тестированию // Экспериментальная психология. Т. 10. №. 3. С. 33–45. doi:10.17759/exppsy.2017100303
    Kuravskii L.S., Artemenkov S.L., Yur'ev G.A., Grigorenko E.L. (2017). A new approach to computerized adaptive testing // Eksperimental'naya psikhologiya = Experimental psychology. T. 10. №. 3. 33–45. doi:10.17759/exppsy.2017100303

Information About the Authors

Dmitriy A. Katyshev, PhD student, Junior Researcher, Laboratory "Information Technologies for Psychological Diagnostics", Moscow State University of psychology and education, Moscow, Russian Federation, ORCID: https://orcid.org/0009-0002-7900-6431, e-mail: katyshevda@mgppu.ru

Metrics

 Web Views

Whole time: 153
Previous month: 44
Current month: 9

 PDF Downloads

Whole time: 41
Previous month: 4
Current month: 0

 Total

Whole time: 194
Previous month: 48
Current month: 9