Modelling and Data Analysis
2025. Vol. 15, no. 3, 47–55
doi:10.17759/mda.2025150303
ISSN: 2219-3758 / 2311-9454 (online)
Artificial intelligence in psychodiagnostics: cognitive states in a digital educational environment
Abstract
The article discusses the task of building multimodal AI models for diagnosing the cognitive state of students (concentration, fatigue, stress) in digital educational environments. The necessity of transition from traditional methods of psychodiagnostics to automated systems based on natural language processing, computer vision and behavioral analysis is substantiated. A mathematical model based on the CNN-LSTM hybrid architecture with the adaptation of parameters to individual cognitive profiles is proposed. The structure of the model is described, recommendations for its construction and integration into the digital educational infrastructure are given. The problems of interpretability, privacy, and sustainability of such models, as well as the prospects for their application, are discussed.
General Information
Keywords: cognitive state, multimodal analysis, artificial intelligence, neural networks, personalized learning, digital environment
Journal rubric: Data Analysis
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2025150303
Received 22.08.2025
Revised 01.09.2025
Accepted
Published
For citation: Yuryeva, N.E. (2025). Artificial intelligence in psychodiagnostics: cognitive states in a digital educational environment. Modelling and Data Analysis, 15(3), 47–55. (In Russ.). https://doi.org/10.17759/mda.2025150303
© Yuryeva N.E., 2025
License: CC BY-NC 4.0
References
- Baker, R. S. (2019). Challenges for the future of educational data mining: The Baker Learning Analytics Prizes. Journal of Educational Data Mining, 11(1), 1–17. https://doi.org/10.5281/zenodo.3554745
- D’Mello, S., & Kory, J. (2015). A review and meta‑analysis of multimodal affect detection systems. ACM Computing Surveys, 47(3), Article 43. https://doi.org/10.1145/2682899. Открытый PDF (author version): https://people.ict.usc.edu/~gratch/CSCI534/Readings/dmello-MMML-Survey.pdf
- Grafsgaard, J. F., Wiggins, J. B., Boyer, K. E., Wiebe, E. N., & Lester, J. C. (2014). Predicting learning and affect from multimodal data streams in task-oriented tutorial dialogue. In J. Stamper, Z. Pardос, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) (pp. 122–129). International Educational Data Mining Society. https://learndialogue.org/pdf/LearnDialogue-Grafsgaard-EDM-2014.pdf
- Reis, R. C. D., Isotani, S., Rodriguez, C. L., Jaques, P. A., & Bittencourt, I. I. (2018). Affective states in computer‑supported collaborative learning: Studying the past to drive the future. Computers & Education, 120, 29–50. https://doi.org/10.1016/j.compedu.2018.01.015. Открытый PDF: https://isiarticles.com/bundles/Article/pre/pdf/126884.pdf
- Kingma, D. P., Ba, J. (2015). Adam: A method for stochastic optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980
- Kartasheva, M. I. (2022). The role of the self-system in the structure of mental states regulation during the educational activities. Yaroslavl Pedagogical Bulletin, (1), 162–174. https://doi.org/10.20323/1813-145X-2022-1-124-162-174
- Wang, J., Yu, Y. (2025). Machine learning approach to student performance prediction of online learning. PLOS ONE, 20(1), e0299018. https://doi.org/10.1371/journal.pone.0299018
- Солдатова, Г.У. (2018). Цифровая социализация в культурно-исторической парадигме: изменяющийся ребенок в изменяющемся мире. Социальная психология и общество, 9(3), 71–80. https://doi.org/10.17759/sps.2018090308
Soldatova, G.U. (2018). Digital socialization in the cultural-historical paradigm: A changing child in a changing world. Social Psychology and Society, 9(3), 71–80. (In Russ.). https://doi.org/10.17759/sps.2018090308 - Савгильдина И. С. Использование искусственного интеллекта в образовании: перспективы и этические дилеммы // Актуальные исследования. 2024. №46 (228). Ч.II. С. 66-68. URL: https://apni.ru/article/10526-ispolzovanie-iskusstvennogo-intellekta-v-obrazovanii-perspektivy-i-eticheskie-dilemmy
Savgildina, I.S. (2024). The use of artificial intelligence in education: Prospects and ethical dilemmas. Actual Research, 46(228), Pt. II, 66–68. (In Russ.). URL: https://apni.ru/article/10526-ispolzovanie-iskusstvennogo-intellekta-v-obrazovanii-perspektivy-i-eticheskie-dilemmy - Коровникова, Н.А. Искусственный интеллект в образовательном пространстве: проблемы и перспективы // Социальные новации и социальные науки. – Москва: ИНИОН РАН, 2021. – № 2. – С. 98–113
Korovnikova, N.A. (2021). Artificial intelligence in the educational space: Problems and prospects. Social Innovations and Social Sciences, 2, 98–113. (In Russ.). Moscow: INION RAS.
Information About the Authors
Metrics
Web Views
Whole time: 121
Previous month: 41
Current month: 9
PDF Downloads
Whole time: 99
Previous month: 37
Current month: 3
Total
Whole time: 220
Previous month: 78
Current month: 12