Artificial intelligence in psychodiagnostics: cognitive states in a digital educational environment

 
Audio is AI-generated
99

Abstract

The article discusses the task of building multimodal AI models for diagnosing the cognitive state of students (concentration, fatigue, stress) in digital educational environments. The necessity of transition from traditional methods of psychodiagnostics to automated systems based on natural language processing, computer vision and behavioral analysis is substantiated. A mathematical model based on the CNN-LSTM hybrid architecture with the adaptation of parameters to individual cognitive profiles is proposed. The structure of the model is described, recommendations for its construction and integration into the digital educational infrastructure are given. The problems of interpretability, privacy, and sustainability of such models, as well as the prospects for their application, are discussed.

General Information

Keywords: cognitive state, multimodal analysis, artificial intelligence, neural networks, personalized learning, digital environment

Journal rubric: Data Analysis

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2025150303

Received 22.08.2025

Revised 01.09.2025

Accepted

Published

For citation: Yuryeva, N.E. (2025). Artificial intelligence in psychodiagnostics: cognitive states in a digital educational environment. Modelling and Data Analysis, 15(3), 47–55. (In Russ.). https://doi.org/10.17759/mda.2025150303

© Yuryeva N.E., 2025

License: CC BY-NC 4.0

References

  1.  Baker, R. S. (2019). Challenges for the future of educational data mining: The Baker Learning Analytics Prizes. Journal of Educational Data Mining, 11(1), 1–17. https://doi.org/10.5281/zenodo.3554745
  2. D’Mello, S., & Kory, J. (2015). A review and meta‑analysis of multimodal affect detection systems. ACM Computing Surveys, 47(3), Article 43. https://doi.org/10.1145/2682899. Открытый PDF (author version): https://people.ict.usc.edu/~gratch/CSCI534/Readings/dmello-MMML-Survey.pdf
  3. Grafsgaard, J. F., Wiggins, J. B., Boyer, K. E., Wiebe, E. N., & Lester, J. C. (2014). Predicting learning and affect from multimodal data streams in task-oriented tutorial dialogue. In J. Stamper, Z. Pardос, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) (pp. 122–129). International Educational Data Mining Society. https://learndialogue.org/pdf/LearnDialogue-Grafsgaard-EDM-2014.pdf
  4. Reis, R. C. D., Isotani, S., Rodriguez, C. L., Jaques, P. A., & Bittencourt, I. I. (2018). Affective states in computer‑supported collaborative learning: Studying the past to drive the future. Computers & Education, 120, 29–50. https://doi.org/10.1016/j.compedu.2018.01.015. Открытый PDF: https://isiarticles.com/bundles/Article/pre/pdf/126884.pdf
  5. Kingma, D. P., Ba, J. (2015). Adam: A method for stochastic optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980
  6. Kartasheva, M. I. (2022). The role of the self-system in the structure of mental states regulation during the educational activities. Yaroslavl Pedagogical Bulletin, (1), 162–174. https://doi.org/10.20323/1813-145X-2022-1-124-162-174
  7. Wang, J., Yu, Y. (2025). Machine learning approach to student performance prediction of online learning. PLOS ONE, 20(1), e0299018. https://doi.org/10.1371/journal.pone.0299018
  8. Солдатова, Г.У. (2018). Цифровая социализация в культурно-исторической парадигме: изменяющийся ребенок в изменяющемся мире. Социальная психология и общество, 9(3), 71–80. https://doi.org/10.17759/sps.2018090308
    Soldatova, G.U. (2018). Digital socialization in the cultural-historical paradigm: A changing child in a changing world. Social Psychology and Society, 9(3), 71–80. (In Russ.). https://doi.org/10.17759/sps.2018090308
  9. Савгильдина И. С. Использование искусственного интеллекта в образовании: перспективы и этические дилеммы // Актуальные исследования. 2024. №46 (228). Ч.II. С. 66-68. URL: https://apni.ru/article/10526-ispolzovanie-iskusstvennogo-intellekta-v-obrazovanii-perspektivy-i-eticheskie-dilemmy
    Savgildina, I.S. (2024). The use of artificial intelligence in education: Prospects and ethical dilemmas. Actual Research, 46(228), Pt. II, 66–68. (In Russ.). URL: https://apni.ru/article/10526-ispolzovanie-iskusstvennogo-intellekta-v-obrazovanii-perspektivy-i-eticheskie-dilemmy
  10. Коровникова, Н.А. Искусственный интеллект в образовательном пространстве: проблемы и перспективы // Социальные новации и социальные науки. – Москва: ИНИОН РАН, 2021. – № 2. – С. 98–113
    Korovnikova, N.A. (2021). Artificial intelligence in the educational space: Problems and prospects. Social Innovations and Social Sciences, 2, 98–113. (In Russ.). Moscow: INION RAS.

Information About the Authors

Nataliya E. Yuryeva, Candidate of Science (Engineering), Head of the Laboratory of Information Technologies for Psychological Diagnostics, Research Fellow of the Laboratory of Quantitative Psychology of the Center for Information Technologies for Psychological Research of the Faculty of Information Technology, Executive Secretary of the journal "Modeling and Data Analysis", Moscow State University of Psychology and Education, Moscow, Russian Federation, ORCID: https://orcid.org/0000-0003-1419-876X, e-mail: yurieva.ne@gmail.com

Metrics

 Web Views

Whole time: 121
Previous month: 41
Current month: 9

 PDF Downloads

Whole time: 99
Previous month: 37
Current month: 3

 Total

Whole time: 220
Previous month: 78
Current month: 12