Scale for Assessing University Digital Educational Environment (AUDEE Scale)



The paper presents results of the development of a scale for assessing university digital educational environment (AUDEE Scale; N = 406; 366 (90.1% women; age varies from 19 to 72 years, on average 28.7 ± 9.6 years (median = 24 years)).AUDEE scale provides a comprehensive description of digital educational environment based on the distinguishing of six indicators: satisfaction with the educational process; satisfaction with communicative interaction; stress tension; the need for support; dishonest strategies in knowledge control; and environment accessibility.The results of the confirmatory factor analysis confirm the six subscales model (IFI = 0.87; χ2 / df = 2.6; RMSEA = 0.06 [0.058; 0.066]; SRMR = 0.06).All subscales have acceptable reliability (Cronbach’s alpha = 0.72—0.91, Split-half Guttman alpha = 0.82—0.92) and demonstrate predictable relationships with convergent indicators: experiences during learning (efforts, pleasure, meaning); cognitive motivation, achievement motivation, self-development motivation, introjected and external motivation, amotivation.To standardize the scale, stanines are calculated.

General Information

Keywords: digital educational environment of the university, students, assessment scale, reliability, validity

Journal rubric: Educational Psychology


Funding. The reported study was funded by the Moscow State University of Psychology and Education (MSUPE) in the framework of the research project “Digital Technologies in Higher Education: Development of Technology for Individualizing Education Using E-Courses”.

For citation: Sorokova M.G., Odintsova M.A., Radchikova N.P. Scale for Assessing University Digital Educational Environment (AUDEE Scale). Psikhologicheskaya nauka i obrazovanie = Psychological Science and Education, 2021. Vol. 26, no. 2, pp. 52–65. DOI: 10.17759/pse.2021260205.


  1. Baeva I.A., Gayazova L.A., Kondakova I.V., Laktionova E.B.Psikhologicheskaya bezopasnost’ lichnosti i tsennosti podrostkov i molodezhi [Psychological Security and Values in Adolescents and Young People].Psikhologicheskaya nauka i obrazovanie = Psychological Science and Education, 2020.Vol.25, no.6, pp.5—18.DOI:10.17759/ pse.2020250601 (In Russ.).
  2. Gordeeva T.O., Sychev O.A., Osin E.N.Oprosnik «Shkaly akademicheskoi motivatsii» [“Academic Motivation Scales” Questionnaire].Psikhologicheskii zhurnal = Psychological Journal, 2014.Vol.35, no.4, pp.98—109.(In Russ.).
  3. Dobud’ko T.V., Gorbatov S.V., Dobud’ko A.V., Pugach O.I.Metodika otsenki elektronnoi informatsionno-obrazovatel’noi sredy pedagogicheskogo vuza [Methods of Pedagogical Institution Electronic Information an Educational Environment Evaluation].Samarskii nauchnyi vestnik = Samara Journal of Science, 2018, no.3(24), pp.311—316.(In Russ.).
  4. Zaichikova N.A.Razrabotka metodiki izmereniya po shkale uspevaemost’-motivatsiya rezul’tatov raboty s testovymi sistemami v tsifrovoi obrazovatel’noi srede [Construction of the Method of Measurement by Scale Success-Motivation of the Results of Work With Test Systems in E-Learning].Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and education, 2018, no.4.DOI:10.17513/spno.27902 (In Russ.).
  5. Kaptsov A.V., Kolesnikova E.I.Metodika otsenki obrazovatel’noi sredy vuza v usloviyakh ee tsifrovizatsii [Methodology for Evaluating the Educational Environment of a University Under the Conditions of its Digitization].Vestnik Samarskoi gumanitarnoi akademii. Seriya: psikhologiya = The Bulletin of the Samara Humanitarian Academy. A series Psycholog, 2019, no. 2(26), pp.147—157.(In Russ.).
  6. Leont’ev D.A., Osin E.N., Dosumova S.Sh., Rzaeva F.R., Bobrov V.V.Perezhivaniya v uchebnoi deyatel’nosti i ikh svyaz’ s psikhologicheskim blagopoluchiem [Study-Related Experiences and Their Association with Psychological Well-Being].Psikhologicheskaya nauka i obrazovanie = Psychological Science and Education, 2018.Vol.23, no.6, pp.55—66.DOI:10.17759/pse.2018230605 (In Russ.).
  7. Margolis A.A.Chto smeshivaet smeshannoe obuchenie? [What Kind of Blending Makes Blended Learning?].Psikhologicheskaya nauka i obrazovanie = Psychological Science and Education, 2018.Vol.23, no 3, pp.5—19.DOI:10.17759/pse.2018230301 (In Russ.).
  8. Slepukhin A.V.K voprosu o postroenii ponyatiinogo apparata informatsionnykh obrazovatel’nykh sred [On the Development of Conceptual Framework of Information Educational Environments].Vestnik chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva = I. Yakovlev Chuvash State Pedagogical University Bulletin, 2016, no.1(89), pp.153—163.(In Russ.).
  9. Sorokova M.G. Tsifrovaya obrazovatel’naya sreda universiteta: komu bolee komfortno v nei uchit’sya? [Digital Educational Environment in University: Who is More Comfortable Studying in it?].Psikhologicheskaya nauka i obrazovanie = Psychological Science and Education, 2020.Vol.25, no.2, pp.44—58.DOI:10.17759/pse.2020250204 (In Russ.).
  10. Acker F., Buuren H., Kreijns al.Why teachers use digital learning materials: The role of self-efficacy, subjective norm and attitude. Education and Information Technologies, 2013, no.18, pp.495—514.DOI:10.1007/ s10639-011-9181-9
  11. Anderson V.A digital pedagogy pivot: re-thinking higher education practice from an HRD perspective.Human Resource Development International, 2020.Vol. 23, no.4, pp.452—467.DOI:10.1080/13678868.2020.1778999
  12. Beyene W.M., Mekonnen A.T., Giannoumis G.A.Inclusion, access, and accessibility of educational resources in higher education institutions: exploring the Ethiopian context.International Journal of Inclusive Education, 2020.DOI:10.1080/13603116.2020.1817580
  13. Börnert-Ringleb M., Casale G., Hillenbrand C.What predicts teachers’ use of digital learning in Germany? Examining the obstacles and conditions of digital learning in special education. European Journal of Special Needs Education, 2021.DOI:10.1080/0885625 7.2021.1872847
  14. Briesch A.M., Chafouleas S.M., Cintron D.W., McCoach D.B.Factorial invariance of the Usage Rating Profile for Supporting Students’ Behavioral Needs (URP-NEEDS).Journal of School Psychology, 2020.Vol.35, no.1, pp.51—60.DOI:10.1037/spq0000309
  15. Dorman J.P.Validation and Use of an Instrument to Assess University-level Psychosocial Environment in Australian Universities.Journal of Further and Higher Education, 2000.Vol.24, no.1, pp.25—38.DOI:10.1080/030987700112291
  16. Duvivier R.J.How to ‘future-proof’ the use of space in universities by integrating new digital technologies.Perspectives: Policy and Practice in Higher Education, 2019.Vol.23, no 1, pp.18—23.DOI:10.1080/1360310 8.2018.1486894
  17. Fraser B.J., Treagust D.F., Dennis N.C.Development of an instrument for assessing classroom psychosocial environment at universities and colleges.Studies in Higher Education, 1986.Vol.11, no.1, pp. 43—54.DOI:10.1080/03075078612331378451
  18. Garris C.P., Fleck B.Student evaluations of transitioned-online courses during the COVID-19 pandemic.Scholarship of Teaching and Learning in Psychology.Advance online publication, 2020.DOI:10.1037/stl0000229
  19. Gourley B., Lane A.Re-invigorating openness at The Open University: The Role of Open Educational Resources.Open Learning: The Journal of Open, Distance and e-Learning, 2009.Vol.24, no.1, pp.57— 65.DOI:10.1080/02680510802627845
  20. Heilporn G., Lakhal S.Environmental Facilitators and Barriers to Student Persistence in Online Courses: Reliability and Validity of New Scales.The Journal of Continuing Higher Education, 2021.DOI:10.1080/0737 7363.2020.1847972
  21. Herrmann K.J., Bager-Elsborg A., Parpala A.Measuring perceptions of the learning environment and approaches to learning: validation of the learn questionnaire.Scandinavian Journal of Educational Research, 2017.Vol.61, no.5, pp.526—539.DOI:10.1 080/00313831.2016.1172497
  22. Hooper D., Coughlan J., Mullen M.Structural Equation Modeling: Guidelines for Determining Model Fit.The Electronic Journal of Business Research Methods, 2007, no.6(1).
  23. Houlden S., Veletsianos G.The problem with flexible learning: neoliberalism, freedom, and learner subjectivities.Learning Media and Technology, 2020.DOI:10.1080/17439884.2020.1833920
  24. Hu L., Bentler P.M.Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives.Structural Equation Modeling, 1999, no.6, pp.1—55.
  25. Maroof R.S., Salloum S.A., Hassanien A.E., Shaalan K.Fear from COVID-19 and technology adoption: the impact of Google Meet during Coronavirus pandemic.Interactive Learning Environments, 2020.DOI:10.1080/10494820.2020.1830121
  26. Matthews A., McLinden M., Greenway C.Rising to the pedagogical challenges of the Fourth Industrial Age in the university of the future: an integrated model of scholarship.Higher Education Pedagogies, 2021. Vol. 6, no.1, pp.1—21.DOI:10.1080/23752696.202 0.1866440
  27. Miles S., Swift L., Leinster S.J.The Dundee Ready Education Environment Measure (DREEM): A review of its adoption and use.Medical Teacher, 2012.Vol.34, no. 9, pp.620—634.DOI:10.3109/0142159X.2012.668625
  28. Ouajdouni A., Chafik K., Boubker O.Measuring e-learning systems success: Data from students of Higher Education Institutions in Morocco.Data in Brief, 2021.DOI:10.1016/j.dib.2021.106807
  29. Sorokova M.G.Students’ perceived learning experiences in the digital educational environment of the university.Mendeley Data, 2020.Vol.1.DOI:10.17632/58ty2dnjtn.1
  30. Sorokova M.G.Skepticism and learning difficulties in a digital environment at the Bachelor’s and Master’s levels: are preconceptions valid? Heliyon, 2020. Vol. 6, Issue 11, E05335.DOI:10.1016/j.heliyon.2020.e05335
  31. Spante M., Hashemi S.S., Lundin M., Algers A.Digital competence and digital literacy in higher education research: Systematic review of concept use.Cogent Education, 2018.Vol.5, no.1.DOI:10.1080/233 1186X.2018.1519143
  32. West S.G., Finch J.F., Curran P.J.Structural equation models with nonnormal variables: problems and remedies.In RH Hoyle (Ed.) Structural equation modeling: Concepts, issues and applications.Newbery Park, CA: Sage; 1995.P.56—75.
  33. Yang B., Huang C.Turn crisis into opportunity in response to COVID-19: experience from a Chinese University and future prospects.Studies in Higher Education, 2021.Vol.46, no.1, pp.121—132.DOI:10.1 080/03075079.2020.1859687

Information About the Authors

Marina G. Sorokova, Doctor of Education, PhD in Physics and Matematics, docent, Head of Scientific and Practical Center for Comprehensive Support of Psychological Research "PsyDATA", Head of the Department of Digital Education, Moscow State University of Psychology and Education, Moscow, Russia, ORCID:, e-mail:

Maria A. Odintsova, PhD in Psychology, Docent, Head of the Department of Psychology and Pedagogy of Distance Learning, Faculty of Distance Learning, Moscow State University of Psychology & Education, Moscow, Russia, ORCID:, e-mail:

Nataly P. Radchikova, PhD in Psychology, Leading Researcher of Scientific and Practical Center for Comprehensive Support of Psychological Research «PsyDATA», Moscow State University of Psychology & Education, Chief Specialist of the Laboratory of Biophysics of Excitable Media, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino;, Moscow, Russia, ORCID:, e-mail:



Total: 1280
Previous month: 39
Current month: 45


Total: 969
Previous month: 16
Current month: 13