Современная зарубежная психология
2020. Том 9. № 2. С. 34–45
doi:10.17759/jmfp.2020090203
ISSN: 2304-4977 (online)
Компоненты вызванного потенциала в исследовании перцептивного научения
Аннотация
Общая информация
Ключевые слова: перцептивное научение, вызванные потенциалы, N1 , N170, MMN, P2
Рубрика издания: Когнитивная педагогика
Тип материала: обзорная статья
DOI: https://doi.org/10.17759/jmfp.2020090203
Финансирование. Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (РФФИ) в рамках научного проекта № 19-313-51039.
Для цитаты: Клеева Д.Ф., Ребрейкина А.Б., Сысоева О.В. Компоненты вызванного потенциала в исследовании перцептивного научения [Электронный ресурс] // Современная зарубежная психология. 2020. Том 9. № 2. С. 34–45. DOI: 10.17759/jmfp.2020090203
Подкаст
Литература
- Иваницкий А. Синтез информации в ключевых отделах коры как основа субъективных переживаний // Журнал высшей нервной деятельности. 1997. Т. 47. № 2. С. 209–225.
- A neural marker of medical visual expertise: implications for training / L. Rourke [et al.] // Advances in Health Sciences Education. 2016. Vol. 21. № 5. P. 953–966. DOI:10.1007/s10459-016-9712-7
- Alain C., Campeanu S., Tremblay K. Changes in Sensory Evoked Responses Coincide with Rapid Improvement in Speech Identification Performance // Journal of Cognitive Neuroscience. 2010. Vol. 22. № 2. P. 392–403. DOI:10.1162/jocn.2009.21279
- An event-related potential study on perceptual learning in grating orientation discrimination / Y. Song [et al.] // NeuroReport. 2007. Vol. 18. № 9. P. 945–948. DOI:10.1097/WNR.0b013e3281527795
- Atienza M., Cantero J.L., Dominguez-Marin E. The time course of neural changes underlying auditory perceptual learning // Learning & Memory. 2002. Vol. 9. № 3. P. 138–150. DOI:10.1101/lm.46502
- Auditory detection learning is accompanied by plasticity in the auditory evoked potential / M.G. Wisniewski [et al.] // Neuroscience Letters. 2020. Vol. 721. 5 p. DOI:10.1016/j.neulet.2020.134781
- Baumann S., Meyer M., Jäncke L. Enhancement of Auditory-evoked Potentials in Musicians Reflects an Influence of Expertise but not Selective Attention // Journal of Cognitive Neuroscience. 2008. Vol. 20. № 12. P. 2238–2249. DOI:10.1162/jocn.2008.20157
- Bosnyak D.J., Eaton R.A., Roberts L.E. Distributed Auditory Cortical Representations Are Modified When Non-musicians Are Trained at Pitch Discrimination with 40 Hz Amplitude Modulated Tones // Cerebral Cortex. 2004. Vol. 14. № 10. P. 1088–1099. DOI:10.1093/cercor/bhh068
- Busey T.A., Vanderkolk J.R. Behavioral and electrophysiological evidence for configural processing in fingerprint experts // Vision Research. 2005. Vol. 45. № 4. P. 431–448. DOI:10.1016/j.visres.2004.08.021
- Dering B., Hoshino N., Theirry G. N170 modulation is expertise driven: evidence from word-inversion effects in speakers of different languages // Future trends in the biology of language. 2013. 16 p.
- Differential Contribution of Frontal and Temporal Cortices to Auditory Change Detection: fMRI and ERP Results / B. Opitz [et al.] // NeuroImage. 2002. Vol. 15. № 1. P. 167–174. DOI:10.1006/nimg.2001.0970
- Eimer M. The face-sensitive N170 component of the event-related brain potential // The Oxford handbook of face perception / Eds. A. Calder [et al.]. OUP Oxford, 2011. P. 329–344.
- Enhancement of Neuroplastic P2 and N1c Auditory Evoked Potentials in Musicians / A. Shahin [et al.] // The Journal of Neuroscience. 2003. Vol. 23. № 13. P. 5545–5552. DOI:10.1523/JNEUROSCI.23-13-05545.2003
- ERP C1 is top-down modulated by orientation perceptual learning / G.-L. Zhang [et al.] // Journal of Vision. 2015. Vol. 15. № 10. P. 1–11 DOI:10.1167/15.10.8
- Evoked-potential changes following discrimination learning involving complex sounds / I. Orduña [et al.] // Clinical Neurophysiology. 2012. Vol. 123. № 4. P. 711–719. DOI:10.1016/j.clinph.2011.08.019
- Gauthier I., Tarr M.J. Becoming a “Greeble” Expert: Exploring Mechanisms for Face Recognition // Vision Research. 1997. Vol. 37. № 12. P. 1673–1682. DOI:10.1016/S0042-6989(96)00286-6
- Grouping of Sequential Sounds–An Event-Related Potential Study Comparing Musicians and Nonmusicians / T.L. van Zuijen [et al.] // Journal of Cognitive Neuroscience. 2004. Vol. 16. № 2. P. 331–338. DOI:10.1162/089892904322984607
- Human Central Auditory Plasticity Associated With Tone Sequence Learning / J.M. Gottselig [et al.] // Learning & Memory. 2004. Vol. 11. № 2. P. 162–171. DOI:10.1101/lm.63304
- Irvine D.R.F. Auditory perceptual learning and changes in the conceptualization of auditory cortex / D.R.F. Irvine [et al.] // Hearing Research. 2018. Vol. 366. P. 3–16. DOI:10.1016/j.heares.2018.03.011
- Is the auditory evoked P2 response a biomarker of learning? / K.L. Tremblay [et al.] // Frontiers in Systems Neuroscience. 2014. Vol. 8. Article ID 28. 13 p. DOI:10.3389/fnsys.2014.00028
- Koelsch S., Schröger E., Tervaniemi M. Superior pre-attentive auditory processing in musicians // Neuroreport. 1999. Vol. 10. № 6. P. 1309–1313. DOI:10.1097/00001756-199904260-00029
- Kuriki S., Kanda S., Hirata Y. Effects of Musical Experience on Different Components of MEG Responses Elicited by Sequential Piano-Tones and Chords // Journal of Neuroscience. 2006. Vol. 26. № 15. P. 4046–4053. DOI:10.1523/JNEUROSCI.3907-05.2006
- Lütkenhöner B., Seither-Preisler A., Seither S. Piano tones evoke stronger magnetic fields than pure tones or noise, both in musicians and non-musicians // NeuroImage. 2006. Vol. 30. № 3. P. 927–937. DOI:10.1016/j.neuroimage.2005.10.034
- Mankel K., Bidelman G.M. Inherent auditory skills rather than formal music training shape the neural encoding of speech // Proceedings of the National Academy of Sciences. 2018. Vol. 115. № 51. P. 13129–13134. DOI:10.1073/pnas.1811793115
- Maurer U., Brandeis D., McCandliss B.D. Fast, visual specialization for reading in English revealed by the topography of the N170 ERP response // Behavioral and Brain Functions. 2005. Vol. 1. № 13. 12 p. DOI:10.1186/1744-9081-1-13
- Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds / A. Shahin [et al.] // NeuroReport. 2005. Vol. 16. № 16. P. 1781–1785. DOI:10.1097/01.wnr.0000185017.29316.63
- Musical Training Enhances Automatic Encoding of Melodic Contour and Interval Structure / T. Fujioka [et al.] // Journal of Cognitive Neuroscience. 2004. Vol. 16. № 6. P. 1010–1021. DOI:10.1162/0898929041502706
- Musicianship boosts perceptual learning of pseudoword-chimeras: an electrophysiological approach / J. Kühnis [et al.] // Brain Topography. 2013. Vol. 26. № 1. P. 110–125. DOI:10.1007/s10548-012-0237-y
- Musicianship facilitates the processing of Western music chords—An ERP and behavioral study / P. Virtala [et al.] // Neuropsychologia. 2014. Vol. 61. P. 247–258. DOI:10.1016/j.neuropsychologia.2014.06.028
- Nikjeh D.A., Lister J.J., Frisch S.A. Preattentive Cortical-Evoked Responses to Pure Tones, Harmonic Tones, and Speech: Influence of Music Training // Ear and Hearing. 2009. Vol. 30. № 4. P. 432–446. DOI:10.1097/AUD.0b013e3181a61bf2
- Perceptual learning and inversion effects: Recognition of prototype-defined familiar checkerboards / C. Civile [et al.] // Journal of Experimental Psychology: Animal Learning and Cognition. 2014. Vol. 40. № 2. P. 144–161. DOI:10.1037/xan0000013
- Perceptual Learning at Higher Trained Cutoff Spatial Frequencies Induces Larger Visual Improvements / D. Wu [et al.] // Frontiers in Psychology. 2020. Vol. 11. Article ID 265. 9 p. DOI:10.3389/fpsyg.2020.00265
- Perceptual Learning Increases the Strength of the Earliest Signals in Visual Cortex / M. Bao [et al.] // Journal of Neuroscience. 2010. Vol. 30. № 45. P. 15080–15084. DOI:10.1523/JNEUROSCI.5703-09.2010
- Perceptual learning induces changes in early and late visual evoked potentials / M. Ahmadi [et al.] // Vision Research. 2018. Vol. 152. P. 101–109. DOI:10.1016/j.visres.2017.08.008
- Perceptual learning modulates sensory evoked response during vowel segregation / K.S. Reinke [et al.] // Cognitive Brain Research. 2003. Vol. 17. № 3. P. 781–791. DOI:10.1016/S0926-6410(03)00202-7
- Qu Z., Song Y., Ding Y. ERP evidence for distinct mechanisms of fast and slow visual perceptual learning // Neuropsychologia. 2010. Vol. 48. № 6. P. 1869–1874. DOI:10.1016/j.neuropsychologia.2010.01.008
- Ritter W., Simson R., Vaughan Jr H.G. Event-Related Potential Correlates of Two Stages of Information Processing in Physical and Semantic Discrimination Tasks // Psychophysiology. 1983. Vol. 20. № 2. P. 168–179. DOI:10.1111/j.1469-8986.1983.tb03283.x
- Rossion B., Curran T., Gauthier I. A defense of the subordinate-level expertise account for the N170 component // Cognition. 2002. Vol. 85. № 2. P. 189–196. DOI:10.1016/S0010-0277(02)00101-4
- Sheehan K.A., McArthur G.M., Bishop D.V.M. Is discrimination training necessary to cause changes in the P2 auditory event-related brain potential to speech sounds? // Cognitive Brain Research. 2005. Vol. 25. № 2. P. 547–553. DOI:10.1016/j.cogbrainres.2005.08.007
- Shiu L.P., Pashler H. Improvement in line orientation discrimination is retinally local but dependent on cognitive set // Perception & Psychophysics. 1992. Vol. 52. № 5. P. 582–588. DOI:10.3758/bf03206720
- Sleep-dependent neuroplastic changes during auditory perceptual learning / C. Alain [et al.] // Neurobiology of Learning and Memory. 2015. Vol. 118. P. 133–142. DOI:10.1016/j.nlm.2014.12.001
- Specificity and generalization of visual perceptual learning in humans: an event-related potential study / Y. Ding [et al.] // NeuroReport. 2003. Vol. 14. № 4. P. 587–590. DOI:10.1097/00001756-200303240-00012
- Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference / P. Schneider [et al.] // Nature neuroscience. 2005. Vol. 8. № 9. P. 1241–1247. DOI:10.1038/nn1530
- Su J., Tan Q., Fang F. Neural correlates of face gender discrimination learning // Experimental brain research. 2013. Vol. 225. № 4. P. 569–578. DOI:10.1007/s00221-012-3396-x
- Tanaka J.W., Curran T. A Neural Basis for Expert Object Recognition // Psychological Science. 2001. Vol. 12. № 1. P. 43–47. DOI:10.1111/1467-9280.00308
- Task-dependent activation latency in human visual extrastriate cortex / A. Fort [et al.] // Neuroscience Letters. 2005. Vol. 379. № 2. P. 144–148. DOI:10.1016/j.neulet.2004.12.076
- The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study / J. Kühnis [et al.] // Neuropsychologia. 2013. Vol. 51. № 8. P. 1608–1618. DOI:10.1016/j.neuropsychologia.2013.04.007
- The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: an electrophysiological account of face-specific processes in the human brain [Электронный ресурс] / B. Rossion [et al.] // Neuroreport. 2000. Vol. 11. № 1. P. 69–72. URL: http://files.face-categorization-lab.webnode.com/200000651-6e24a6f1c7/Rossion_2000_Neuroreport.pdf (дата обращения: 15.06.2020).
- Tong Y., Melara R. D., Rao A. P2 enhancement from auditory discrimination training is associated with improved reaction times // Brain Research. 2009. Vol. 1297. P. 80–88. DOI:10.1016/j.brainres.2009.07.089
- Visual Perceptual Learning in Human Object Recognition Areas: A Repetition Priming Study Using High-Density Electrical Mapping / G.M. Doniger [et al.] // NeuroImage. 2001. Vol. 13. № 2. P. 305–313. DOI:10.1006/nimg.2000.0684
- Yin R.K. Looking at upside-down faces // Journal of Experimental Psychology. 1969. Vol. 81. № 1. P. 141–145. DOI:10.1037/h0027474
Информация об авторах
Метрики
Просмотров
Всего: 613
В прошлом месяце: 5
В текущем месяце: 0
Скачиваний
Всего: 338
В прошлом месяце: 6
В текущем месяце: 0