Моделирование и анализ данных
2021. Том 11. № 2. С. 31–50
doi:10.17759/mda.2021110202
ISSN: 2219-3758 / 2311-9454 (online)
Упорядоченные сети частных корреляций в психологических исследованиях
Аннотация
Общая информация
Ключевые слова: корреляционный анализ, сети частных корреляций, регуляризация, моделирование сетей в психологии, язык R
Рубрика издания: Анализ данных
Тип материала: научная статья
DOI: https://doi.org/10.17759/mda.2021110202
Для цитаты: Артеменков С.Л. Упорядоченные сети частных корреляций в психологических исследованиях // Моделирование и анализ данных. 2021. Том 11. № 2. С. 31–50. DOI: 10.17759/mda.2021110202
Литература
- Алескеров Ф.Т., Хабина Э.Л., Шварц Д.А. Бинарные отношения, графы и коллективные ре- шения. М.: ФИЗМАТЛИТ, 2017. 344 с.
- Артеменков С.Л. Сетевое моделирование психологических конструктов // Моделирование и анализ данных. 2017. № 1. С. 9–28.
- Артеменков С.Л. Иниционно-семантическая модель дивергентной креативности [Элек- тронный ресурс] // Психологическая наука и образование psyedu.ru. 2012. № 3. С. 1–15. URL: http://psyjournals.ru/psyedu_ru/2012/n3/55540.shtml
- Жукова Е.С., Артеменков С.Л., Богоявленская Д.Б. К вопросу о соотношении одаренности и осознанной саморегуляции. Личностные и регуляторные ресурсы достижения образо- вательных и профессиональных целей в эпоху цифровизации. Москва: Знание-М, 2020. С. 104–115. DOI: 10.38006/907345–50–8.2020.104.115.
- Жукова Е.С., Артеменков С.Л., Богоявленская Д.Б. Исследование интеллектуальной актив- ности в младшем школьном и подростковом возрасте / Моделирование и анализ данных. 2019. № 1. С. 11–29.
- Митина О.В. Методы исследования каузальных связей // Экспериментальная психология в России: традиции и перспективы. М.: «Институт психологии РАН», 2010. С. 139–143.
- Шишлянникова Л.М. Применение корреляционного анализа в психологии // Психологиче- ская наука и образование. 2009. Том 14. № 1. С. 98–107.
- Abacioglu C.S., Isvoranu A.M., Verkuyten M., Thijs J. & Epskamp S. Exploring teachers’ influ- ence on student motivation in multicultural classrooms: A comparative network analysis. Journal of School Psychology, 2019. 74, 90–105. https://doi.org/10.1016/j.jsp.2019.02.003.
- Agresti A. Categorical data analysis. New York, NY: Wiley, Inc. 1990.
- Berg J.W., Smid W., Kossakowski J.J., Beek D.V., Borsboom D., Janssen E., & Gijs L. The Ap- plication of Network Analysis to Dynamic Risk Factors in Adult Male Sex Offenders. Clinical Psychological Science, 2020. 8, 539–554.
- Bogoyavlenskaya D., Joukova E., Artemenkov S. Longitudinal Study Of The Creative Abilities // The European Proceedings of Social & Behavioural Sciences (EpSBS), 2018. 14: 125–131. doi: https://dx.doi.org/10.15405/epsbs.2018.11.02.14
- Borsboom D. A network theory of mental disorders. World Psychiatry, 2017. 16(1), 5–13.
- Borsboom D., & Cramer A.O.J. Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 2013. 9, 91–121.
- Borsboom D., Cramer A., & Kalis A. Brain disorders? Not really: Why network structures block reductionism in psychopathology research. Behavioral and Brain Sciences, 2019. 42, 1–54. doi:10.1017/S0140525X17002266
- Chen J., & Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 2008. 95, 759–771.
- Costantini G., Epskamp S., Borsboom D., Perugini M., Mõttus R., Waldorp L.J., & Cram- er A.O.J. State of the aRt personality research: A tutorial on network analysis of personality data in R. Journal of Research in Personality, 2015. 54, 13–29.
- Costantini G., Richetin J., Emanuele P., Casini E., Epskamp S. & Perugini M. Stability and var- iability of personality networks. A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 2019. 136, 68–78.
- de Ron J, Fried E.I., Epskamp S. Psychological networks in clinical populations: investigating the consequences of Berkson’s bias. Psychological Medicine, 2019. 1–9. https://doi.org/10.1017/ S0033291719003209
- Drton M., & Perlman M.D. Model selection for gaussian concentration graphs. Biometrika, 2004. 91, 591–602.
- Epskamp S., Borsboom D., Fried E.I. Estimating psychological networks and their accuracy: a tutorial paper. Behavior Research Methods. 2018. 50, 195–212.
- Epskamp S., Fried E.I. A tutorial on regularized partial correlation networks. Psychological Methods, 2018. 23(4), 617–634. https://doi.org/10.1037/met0000167
- Epskamp S., Rhemtula M., & Borsboom D. Generalized network psychometrics: Combining net- work and latent variable models. Psychometrika, 2017. 82, 904–927. http://dx.doi.org/10.1007/ s11336–017–9557-x
- Epskamp S., van Borkulo C.D., van der Veen D.C., Servaas M.N., Isvoranu A.M., Riese H. & Cramer A.O.J. Personalized Network Modeling in Psychopathology: The Importance of Contem- poraneous and Temporal Connections. Clinical Psychological Science, 2018. 6(3), 416–427.
- Foygel R., & Drton M. Extended Bayesian information criteria for Gaussian graphical models. Advances in Neural Information Processing Systems, 2010. 23, 2020–2028.
- Friedman J.H., Hastie T., & Tibshirani R. Sparse inverse covariance estimation with the graphi- cal lasso. Biostatistics, 2008. 9, 432–441.
- Golino H.F., & Epskamp S. Exploratory graph analysis: A new approach for estimating the num- ber of dimensions in psychological research. PloS One, 2017. 12, e0174035.
- Hastie T., Tibshirani R., & Wainwright M. Statistical learning with sparsity: The lasso and gener- alizations. Boca Raton, FL: CRC Press. 2015.
- Isvoranu A-M., Guloksuz S., Epskamp S., van Os J., Borsboom D., GROUP Investigators. Toward incorporating genetic risk scores into symptom networks of psychosis. Psychological Medicine, 2020. 50, 636–643. https://doi.org/10.1017/S003329171900045X
- Kan K-J., de Jonge H., van der Maas H.L.J., Levine S.Z., & Epskamp S. How to Compare Psycho- metric Factor and Network Models. Journal of Intelligence, 2020. 8(4), 35.
- Koller D., & Friedman N. Probabilistic graphical models: Principles and techniques. Cambridge, MA: MIT Press. 2009.
- Kossakowski J.J., Epskamp S., Kieffer J.M., van Borkulo C.D., Rhemtulla M., & Borsboom D. The application of a network approach to health-related quality of life (HRQoL): Introducing a new method for assessing HRQoL in healthy adults and cancer patient. Quality of Life Re- search, 2015. 25, 781–792.
- Lauritzen S.L. Graphical models. Oxford, UK: Clarendon Press. 1996.
- Liu H., Lafferty J.D., & Wasserman L. The nonparanormal: Semiparametric estimation of high di- mensional undirected graphs. The Journal of Machine Learning Research, 2009. 10, 2295–2328.
- Meinshausen N., & Bühlmann P. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 2006. 34, 1436–1462.
- Muthén B. A general structural equation model with dichotomous, ordered categorical, and con- tinuous latent variable indicators. Psychometrika, 1984. 49, 115–132.
- Olsson U. Maximum likelihood estimation of the polychoric correlation coefficient. Psychometri- ka, 1979. 44, 443–460.
- Olsson U., Drasgow F., & Dorans N.J. The polyserial correlation coefficient. Psychometrika, 1982. 47, 337–347.
- Oreel T.H., Borsboom D., Epskamp S., Hartog I.D., Netjes J.E., Niewekerk P.T., Henriques J.P.S., Scherer-Rath M., Van Laarhoven H.W.M. & Sprangers M.A.G. The dynamics in health-related quality of life of patients with stable coronary artery disease were revealed: a network analysis. Journal of clinical epidemiology. 2019. 107, 116–123.
- Pearl J. Causality: Models, reasoning, and inference. Cambridge, UK: Cambridge University Press. 2000.
- Pedersen T.L. ggraph: An Implementation of grammar of graphics for graphs and networks (R package version 1.0.0). 2017. Retrieved from https://CRAN.R-project.org/package&ggraph
- Pourahmadi M. Covariance estimation: The glm and regularization perspectives. Statistical Sci- ence, 2011. 26, 369–387.
- Rosseel Y. lavaan: An R package for structural equation modeling. Journal of Statistical Software, 2012. 48(2), 1–36.
- Schmittmann V.D., Cramer A.O.J., Waldorp L.J., Epskamp S., Kievit R.A., & Borsboom D. De- constructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 2013. 31, 43–53.
- Soutter A.R.B., Bates T.C., Mõttus R. Big Five and HEXACO Personality Traits, Proenvironmen- tal Attitudes, and Behaviors: A Meta-Analysis. Perspect Psychol Sci. 2020. 15(4), 913–941. doi: 10.1177/1745691620903019.
- Stevens S.S. On the theory of scales of measurement. Science, New Series, 1946. 103, 677–680.
- Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 1996. 58, 267–288.
- van Borkulo C.D., & Epskamp S. IsingFit: Fitting Ising models using the elasso method. R pack- age version 0.2.0. 2014.
- Wagenmakers E.-J. A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 2007. 14, 779–804.
- Wasserman S., & Faust K. Social network analysis: Methods and applications. New York, NY: Cambridge University Press. 1994.
- Zhao P., & Yu B. On model selection consistency of lasso. The Journal of Machine Learning Research, 2006. 7, 2541–2563.
- Zhao T., Li X., Liu H., Roeder K., Lafferty J., & Wasserman L. huge: High-dimensional undirected graph estimation (R package version 1.2.7). 2015. Retrieved from https://CRAN.R-project.org/ package&huge
Информация об авторах
Метрики
Просмотров
Всего: 466
В прошлом месяце: 11
В текущем месяце: 2
Скачиваний
Всего: 264
В прошлом месяце: 6
В текущем месяце: 0