Modelling and Data Analysis
2025. Vol. 15, no. 2, 127–138
doi:10.17759/mda.2025150207
ISSN: 2219-3758 / 2311-9454 (online)
Modern approaches to modeling of elastic-strength properties of polymer composites
Abstract
Context and relevance. Improvement of approaches to predicting the elastic-strength characteristics of composites is an urgent task in the mechanics of deformable solids, since polymer composite materials are widely used in modern technology, and the speed and accuracy of modeling the characteristics of such structures play an important role in the design and operation of structures made of composite. Objective. Having considered the existing approaches to PCM modeling, to identify the most promising ones. Results. The article provides analysis of existing approaches to modeling materials with heterogeneous structures: from early phenomenological and semi-empirical to modern multiscale ones that take into account the mutual influence of processes occurring in composites at the micro-, meso-, and macroscale levels. Conclusions. Modern multiscale finite-element approaches to modeling the elastic-strength properties of a composite material are widely used, however, a detailed description of the processes occurring at the micro- and meso- levels of the PCM requires significant computing power, which makes such approaches inapplicable in practice. To solve this problem, the multiscale approach is complemented by machine learning methods using surrogate neural networks.
General Information
Keywords: polymer composites, computer modeling, effective properties, finite-element method, multiscale approach, surrogate neural network
Journal rubric: Numerical Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2025150207
Received 08.04.2025
Accepted
Published
For citation: Zagordan, N.L., Mochalova, Yu.D., Abgaryan, K.K. (2025). Modern approaches to modeling of elastic-strength properties of polymer composites. Modelling and Data Analysis, 15(2), 127–138. (In Russ.). https://doi.org/10.17759/mda.2025150207
© Zagordan N.L., Mochalova Yu.D., Abgaryan K.K., 2025
License: CC BY-NC 4.0
References
- Hill, R., (1963). Elastic properties of reinforced solids: some theoretical principles. Journal of the mechanics and physics of solids, V.11, 357—372. https://doi.org/10.1016/0022-5096(63)90036-X
- Hashin, Z., Rosen, B.W. (1964). The elastic moduli of fiber reinforced materials. Journal of Applied Mechanics, Trans ASME, № 31, pp. 223—232. http://dx.doi.org/10.1115/1.3629590
- Chamis, C.C. (1989). Mechanics of composite materials: past, present, and future. Journal of Composites Technology and Research, (1), 3—14. https://doi.org/10.1520/CTR10143J
- Sendencki, Dzh. Kompozicionnye materialy. V 8-mi t. T.2. Mekhanika kompozicionnyh materialov (1978). M.: Mir. (In Russ.).
- Younes, R., Hallal, A., Fardoun, F., Chehade, F.H. (2012). Comparative Review Study on Elastic Properties Modeling for Unidirectional Composite Materials. Composite Materials Book 1. DOI:10.5772/50362
- Muyzemnek, A.Yu., Ivanova, T.N., Kartashova, E.D. (2021). A Comparison of Experimental and Computation Results of Finding Effective Characteristics of Elastic Properties of Polymer Layered Composites from Carbon and Glass Fabrics PNRPU Mechanics Bulletin, № 2, 88—105. DOI: 10.15593/perm.mech/2021.2.09
- Buryachenko, V. (2007). Micromechanics of heterogeneous materials. New York: Springer.
- Tashkinov, M.A., Wildemann, V.E., Mikhailova, N.V. (2012). Method of successive approximations in stochastic boundary value problem for structurally heterogeneous materials. Computational Materials Science, V.52, 101—106. DOI:10.1016/j.commatsci.2011.04.025
- Horoshun, L.P. (1978). Metody sluchajnyh funkcij v zadachah o makroskopicheskih svojstvah mikroneodnorodnyh sred. Prikladnaya mekhanika, 14(2), 3—17. (In Russ.).
- Skudra, A.M., Bulavs, F.Ya., Rocens, K.A. (1971). Polzuchest' i staticheskaya ustalost' armirovannyh plastikov. Riga: Zinatne. (In Russ.).
- Horoshun, L.P. (1968). O metode opredeleniya uprugih modulej armirovannyh tel. Mekhanika polimerov. №1. 78—87. (In Russ.).
- Kroner, E. (1967). Elastic moduli of perfectly disordered composite materials. Journal of the Mechanics and Physics of Solids, 15 (5), 319—329. https://doi.org/10.1016/0022-5096(67)90026-9
- Horoshun, L.P. (1968). O metode opredeleniya uprugih modulej armirovannyh tel. Mekhanika poli. Balabaev, N.K., Vlasov, A.N., Zgaevskij, V.E., Karnet, Yu.N., Yanovskij, Yu.G. (1999). Struktura i mikromekhanicheskie svojstva mezhfaznyh sloyov polimernyh matrichnyh kompozitov. Mekhanika kompozicionnyh materialov i konstrukcij, 5(2), 109—123.merov. №1. 78—87. (In Russ.).
- Khalatur, P.G. (1991). Computer simulation of thin polymer layers. Makromol. Chem., Macromol. Symp., 44(1), 23—32. https://doi.org/10.1002/masy.19910440104
- Sokolov, A.P., Shchetinin, V. N., Kozlov, M.Yu. (2020). Modelirovanie uprugih svojstv kompozitnyh materialov metodom asimptoticheskogo osredneniya s uchetom neideal'nogo interfejsa komponent. Matem. modelirovanie, 32(8), 119—138. https://doi.org/10.20948/mm-2020-08-08. (In Russ.).
- Brosseau, C. (2024). Modeling the Interface Between Phases in Dense Polymer-Carbon Black Nanoparticle Composites by Dielectric Spectroscopy: Where Are We Now and What are the Opportunities? Macromol. Theory and Simulations, 33. https://doi.org/10.1002/mats.202400009
- Dimitrienko, Yu, Yurin, Yu., Bogdanov, I., Yahnovskiy, A. , Sborschikov, S., Dimitrienko, A. (2023). Finite element modeling of integral viscoelastic properties of textile composites. E3S Web of Conferences,V. 376. https://doi.org/10.1051/e3sconf/202337601032
- Schröder, J. (2014). A numerical two-scale homogenization scheme: the FE2-method. Plasticity and beyond: microstructures, crystal-plasticity and phase transitions. Springer, 1—64.
- Geers, M. G.D., Kouznetsova, V.G., Brekelmans, W.A.M. (2010). Multi-scale computational homogenization: Trends and challenges. Journal of Computational and Applied Mathematics, 234(7), 2175—2182. https://doi.org/10.1016/j.cam.2009.08.077
- Nguyen, V., Kouznetsova, V.G., Geers, M.G.D. (2012). On the construction of an optimal surrogate model for multiscale analysis of heterogeneous materials. Computational Mechanics, 50(6), 633—655. https://arxiv.org/html/2503.04901v1
- Lin, M., Brandyberry, D., Zhang, X. (2023). Multiscale Modeling of Composite Materials under Volumetric and Interfacial Damage: Achieving Adaptive Model Order Reduction. National Harbor, MD & Online. https://doi.org/10.2514/6.2023-0138
- Blanco, P.J., Sanchez P.J., de Souza Neto E.A., Feijoo R.A. (2016). The method of multiscale virtual power for the derivation of a second order mechanical model. Mechanics of Materials. V.99, 53—67. https://doi.org/10.1016/j.mechmat.2016.05.003
- Lopes, I.A.R., Pires, F.M.A. (2022). Formulation and numerical implementation of a variationally consistent multiscale model based on second-order computational homogenization at finite strains for quasi-static problems. Computer Methods in applied mechanics and engineering, 392(3):114714. DOI:10.1016/j.cma.2022.114714
- Fish, J., Shek, K. (2000). Multiscale analysis of composite materials and structures. Composites Science and Technology, 12(60), 2547—2556. https://doi.org/10.1016/S0266-3538(00)00048-8
- Hashin, Z. (1962). The elastic moduli of heterogeneous materials. ASME Journal of Applied Mechanics, 29(1), 143—150. https://doi.org/10.1115/1.3636446
- Belov, D.A. (2009). Gomogenizaciya i geterogenizaciya odnonapravlennyh uprugih voloknistyh kompozitov: Dissertaciya kandidata tekhnicheskih nauk: 01.02.06 /D.A.Belova. Spb. (In Russ.).
- Ullah, Z., Kaczmarczyk, L., Zhou, X., Falzon, B., Pearce, C. (2020). Hierarchical finite element-based multiscale modelling of composite laminates. Composites Part B: Engineering, 201:108321. Advance online publication. DOI:10.1016/j.compositesb.2020.108321
- Bruno, G., Christoff, J., Humberto, S. , Almeida, Marcelo, L. , Ribeiro, Maisa, M. , Maciel, Rui, M., Guedes, Volnei, T. (2024). Multiscale modelling of composite laminates with voids through the direct FE2 method. Theoretical and Applied Fracture Mechanics, V.131. https://doi.org/10.1016/j.tafmec.2024.104424
- Ghaboussi, J., Garrett, J., Wu, X. (1991). Knowledge-based modeling of material behavior with neural networks. Journal of Engineering Mechanics, 117(1), 132—153. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
- Ghaboussi, J., Pecknold, D.A., Zhang, M., Haj-Ali, R.M. (1998). Autoprogressive training of neural network constitutive models. International Journal for Numerical Methods in Engineering, 42(1), 105—126. https://doi.org/10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2
- Hashash, Y., Jung, S., Ghaboussi, J. (2004). Numerical implementation of a neural network based material model in finite element analysis. International Journal for Numerical Methods in Engineering, 59(7), 989—1005. https://doi.org/10.1002/nme.905
- Xin, L., Su, T., Fei, T., Haodong, D., Wenbin, Y. (2020). How machine learning can help the design and analysis of composite materials and structures? Materials Science, Physics, arXiv:2010.09438, https://doi.org/10.48550/arXiv.2010.09438
- Rocha, I.B.C.M., Kerfriden, P., van Der Meer, F.P. (2020). On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. ArXiv:2007.07749. https://doi.org/10.48550/arXiv.2007.07749
- Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R. (2024). Data-driven physics-constrained recurrent neural networks for multiscale damage modeling of metallic alloys with process-induced porosity. Computational Mechanics, 74(1), 191—221. doi/10.1007/s00466-023-02429-1
- Liu, M., Li, H., Zhou, H., Zhang, H., Huang, G. (2024). Development of machine learning methods for mechanical problems associated with fiber composite materials: A review. Composites Communications, V.49, 101988. https://doi.org/10.1016/j.coco.2024.101988
- Dwivedi, V., Parashar, N., Srinivasan, B. (2021). Distributed learning machines for solving forward and inverse problems in partial differential equations. Neurocomputing, V. 420, 299—316. https://doi.org/10.1016/j.neucom.2020.09.006
- Mostajeran, F., Faroughi, S.A. (2024). Epi-ckans: Elasto-plasticity informed kolmogorov-arnold networks using chebyshev polynomials. ArXiv preprint arXiv:2410.10897,
https://doi.org/10.48550/arXiv.2410.10897 - Ghane, Е., Maia, M.A., Rocha, I.B.C.M., Fagerstorm, M., Mirakhalaf, M. (2025). Multiscale Analysis of Woven Composites Using Hierarchical Physically Recurrent Neural Networks. Computational Physics, https://arxiv.org/html/2503.04901v1
Information About the Authors
Metrics
Web Views
Whole time: 128
Previous month: 39
Current month: 5
PDF Downloads
Whole time: 38
Previous month: 6
Current month: 0
Total
Whole time: 166
Previous month: 45
Current month: 5