Портал психологических изданий PsyJournals.ru
Каталог изданий 116Рубрики 53Авторы 9136Новости 1808Ключевые слова 5095 Правила публикацииВебинарыRSS RSS

Включен в Web of Science СС (ESCI)

ВАК

РИНЦ

Рейтинг Science Index РИНЦ 2019

36 место — направление «Психология»

0,323 — показатель журнала в рейтинге SCIENCE INDEX

0,829 — двухлетний импакт-фактор

CrossRef

Экспериментальная психология

Издатель: Московский государственный психолого-педагогический университет

ISSN (печатная версия): 2072-7593

ISSN (online): 2311-7036

DOI: https://doi.org/10.17759/exppsy

Лицензия: CC BY-NC 4.0

Издается с 2008 года

Периодичность: 4 номера в год

Доступ к электронным архивам: открытый

 

Возможности автоматического анализа текста в задаче определения психологических особенностей автора 114

Ковалёв А.К.
младший научный сотрудник, Федеральный исследовательский центр “Информатика и управление” Российской академии наук (ФИЦ ИУ РАН), Москва, Россия
ORCID: https://orcid.org/0000-0001-7309-7382
e-mail: alexeykkov@gmail.com

Кузнецова Ю.М.
кандидат психологических наук, старший научный сотрудник Института системного анализа, Федеральный исследовательский центр “Информатика и управление” Российской академии наук (ФИЦ ИУ РАН), Москва, Россия
ORCID: https://orcid.org/0000-0001-9380-4478
e-mail: kuzjum@yandex.ru

Пенкина М.Ю.
старший преподаватель кафедры общей психологии, Московский государственный психолого-педагогического университет (ФГБОУ ВО МГППУ), Москва, Россия
ORCID: https://orcid.org/0000-0001-7046-6963
e-mail: mpenkina@mail.ru

Станкевич М.А.
младший научный сотрудник, Федеральный исследовательский центр “Информатика и управление” Российской академии наук (ФИЦ ИУ РАН), Москва, Россия
ORCID: https://orcid.org/0000-0003-0705-5832
e-mail: maxastan95@gmail.com

Чудова Н.В.
кандидат психологических наук, старший научный сотрудник Института системного анализа, Федеральный исследовательский центр “Информатика и управление” Российской академии наук (ФИЦ ИУ РАН), Москва, Россия
ORCID: https://orcid.org/0000-0002-3188-0886
e-mail: nchudova@gmail.com

Аннотация

С помощью разработанного в ФИЦ ИУ РАН инструмента автоматического анализа текста и методов машинного обучения получены первые результаты в задаче выявления текстовых параметров, специфичных для людей с определенными психологическими особенностями. Инструмент корпусных лингвостатистических исследований, опирающийся на использование реляционно-ситуационного анализа, психолингвистических показателей и словарей, охватывающих лексику эмоциональной и рациональной оценки, позволили получить значения для 177 текстовых признаков эссе, написанных 486 испытуемыми. Для получения данных об уровне выраженности характерологических и личностных особенностей испытуемых применялся ряд психологических опросников. При обработке данных использовались алгоритмы бинарной классификации — методы опорных векторов (SVM) и «Случайный лес» (Random Forest). Полученные результаты позволяют сделать выводы о перспективности использования некоторых текстовых параметров в задачах популяционной психодиагностики и об адекватности примененных алгоритмов классификации.

Ссылка для цитирования

Финансирование

Работа выполнена при частичной финансовой поддержке РФФИ (проект № 17-29-02247 «Создание методов диагностики распространения фрустрации в сетевых дискуссиях» и проект № 18-00-00233 «Методы комплексного интеллектуального анализа информации различных типов для социогуманитарных исследований в социальных медиа»).

Фрагмент статьи

Проблема определения личностных особенностей автора по созданному им тексту не нова для гуманитарных наук; во второй половине ХХ в. на стыке психологии и лингвистики возникла новая отрасль знания — психолингвистика; в последние годы исследования в этой области получили новый импульс в связи с появлением инструментов автоматического анализа текстов. В настоящей работе представлены результаты оценки личностных особенностей автора по его текстам, полученные с помощью разрабатываемого в ФИЦ ИУ РАН инструмента корпусных лингвостатистических исследований, основанного на использовании реляционно-ситуационного анализа, психолингвистических показателей и словарей, охватывающих лексику эмоциональной и рациональной оценки.

Литература
  1. Алмаев Н.А., Дороднев А.Б., Малкова Г.Ю. Проявление психологической травмы в автобиографических рассказах // Экспериментальная психология. 2009. Т. 2. № 2. С. 104—115.
  2. Воронцова О.Ю., Ениколопов С.Н., Кузнецова Ю.М., Чудова Н.В. и др. Лингвистические характеристики текстов психически больных и здоровых людей [Электронный ресурс] // Психологические исследования. 2018. Т. 11. № 61. URL: http://psystudy.ru/index.php/ num/2018v11n61/1622-enikolopov61.html
  3. Девяткин Д.А., Кузнецова Ю.М., Чудова, Н.В., Швец А.В. Интеллектуальный анализ проявлений вербальной агрессивности в текстах сетевых сообществ // Искусственный интеллект и принятие решений. 2014. № 2. С. 95—109.
  4. Ениколопов С.Н., Кузнецова Ю.М., Смирнов И.В., Станкевич М.А., Чудова Н.В. Создание инструмента автоматического анализа текста в интересах социогуманитарных исследований. Ч. 1. Методические и методологические аспекты // Искусственный интеллект и принятие решений. 2019. № 2. С. 28—38. DOI 10.14357/20718594190203.
  5. Ениколопов С.Н., Кузнецова Ю.М., Минин А.Н., Пенкина М.Ю., Смирнов И.В., Станкевич М.А., Чудова Н.В. Особенности текста и психологические особенности: опыт эмпирического компьютерного исследования // Труды ИСА РАН. 2019. № 3. С. 91—99.
  6. Золотова Г.А., Онипенко Н.К., Сидорова М.Ю. Коммуникативная грамматика русского языка. М.: Ин-т рус. яз. РАН им. В.В. Виноградова, 2004.
  7. Ковалёв А.К., Кузнецова Ю.М., Минин А.Н., Пенкина М.Ю., Смирнов И.В., Станкевич М.А., Чудова Н.В. Методы выявления по тексту психологических характеристик автора (на примере агрессивности) // Вопросы кибербезопасности. 2019. № 4(32). С. 72—80.
  8. Литвинова Т.А., Литвинова О.А., Рыжкова Е.С., Бирюкова Е.Д., Середин П.В., Загоровская О.В. Исследование влияния пола и психологических характеристик автора на количественные параметры его текста с использованием программы Linguistic Inquiry and Word Count // Научный диалог. 2015. № 12 (48). С. 101—109.
  9. Осипов Г.С. Приобретение знаний интеллектуальными системами: Основы теории и технологии. М.: Наука, Физматлит, 1997. 142 с.
  10. Осипов Г.С., Смирнов И.В., Тихомиров И.А. Реляционно-ситуационный метод поиска и анализа текстов и его приложения // Искусственный интеллект и принятие решений. 2008. № 2. С. 3—10.
  11. Эссе. Большая советская энциклопедия. М.: Советская энциклопедия, 1969—1978.
  12. Gupta U., Chatterjee A., Srikanth R., Agrawal P. A Sentiment-and-Semantics-Based Approach for Emotion Detection in Textual Conversations [Электронный ресурс] // Neu-IR: Workshop on Neural Information Retrieval, SIGIR. 2017, ACM. URL: arXiv:1707.06996
  13. Pennebaker J., Boyd R., Jordan K., Blackburn K. The development and psychometric properties of LIWC-2015 [Электронный ресурс]. 2015. URL: https://repositories.lib.utexas.edu/bitstream/ handle/2152/31333/LIWC2015_LanguageManual.pdf
Статьи по теме

Ениколопов С.Н., Медведева Т.И., Воронцова О.Ю.

Моральные дилеммы и особенности личности

CrossRef doi:10.17759/psylaw.2019090210

 
О проекте PsyJournals.ru

© 2007–2020 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Creative Commons License Репозиторий открытого доступа     Рейтинг репозиториев Webometrics

Яндекс.Метрика