Портал психологических изданий PsyJournals.ru
Каталог изданий 121Рубрики 53Авторы 9468Новости 1865Ключевые слова 5095 Правила публикацииВебинарыRSS RSS
Экспериментальная психология - №3 / 2020 | Перейти к описанию
Web of Science СС

Включен в Web of Science СС (ESCI)

ВАК

РИНЦ

Рейтинг Science Index РИНЦ 2019

36 место — направление «Психология»

0,323 — показатель журнала в рейтинге SCIENCE INDEX

0,829 — двухлетний импакт-фактор

CrossRef

Экспериментальная психология

Издатель: Московский государственный психолого-педагогический университет

ISSN (печатная версия): 2072-7593

ISSN (online): 2311-7036

DOI: https://doi.org/10.17759/exppsy

Лицензия: CC BY-NC 4.0

Издается с 2008 года

Периодичность: 4 номера в год

Доступ к электронным архивам: открытый

 

Синхронизация электрических осцилляций в организации социальной жизни микроорганизмов 56

|

Греченко Т.Н.
доктор психологических наук, ведущий научный сотрудник, Институт психологии РАН (ФГБУН «ИП РАН»), Москва, Россия
ORCID: https://orcid.org/0000-0001-7361-4714
e-mail: grecht@mail.ru

Харитонов А.Н.
кандидат психологических наук, старший научный сотрудник, Института Психологии РАН (ФГБУН «ИП РАН»), Москва, Россия
ORCID: https://orcid.org/0000-0002-4801-9937
e-mail: ankhome47@list.ru

Жегалло А.В.
кандидат психологических наук, старший научный сотрудник, Институт психологии РАН (ФГБУН «ИП РАН») и Московский государственный психолого-педагогический университет (ГБОУ «МГППУ»), Москва, Россия
ORCID: https://orcid.org/0000-0002-5307-0083
e-mail: zhegs@mail.ru

Сумина Е.Л.
кандидат биологических наук, старший научный сотрудник, Геологический факультет, Московский государственный университет им. М.В. Ломоносова (Геологический факультет ФГБОУ ВО «МГУ»), Москва, Россия
ORCID: https://orcid.org/0000-0002-8848-2379
e-mail: stromatolit@list.ru

Сумин Д.Л.
палеонтолог, cетевое исследовательское сообщество САНИПЭБ, Москва, Россия
ORCID: https://orcid.org/0000-0002-4455-0819
e-mail: stromatolit@list.ru

Аннотация

Многие микроорганизмы образуют сообщества, члены которых координируют свои действия при решении общих задач. Одной из форм таких сообществ являются биопленки. В опытах по восстановлению целостности биопленки получены данные о состоянии осцилляторов в относительно спокойных и в активных локусах пленки, формируемой цианобактериями Oscillatoria terebriformis. Для изучения взаимодействия между различными частями биопленки регистрировались полевые потенциалы одновременно из двух локусов. Наличие функциональной связи между разными зонами биопленки выявлялось при помощи коэффициентов кросскорреляции. Уровень синхронизации полевых потенциалов между областями определялся при помощи коэффициентов частотной и частотно-временной когерентности. Локусы повышенной и пониженной активности характеризуются разными значениями частоты и амплитуды электрических осцилляций. Между активными зонами характерен высокий уровень синхронизации, который сохраняется в течение довольно длительного времени. Синхронизация осцилляций между активным и спокойным локусами существенно ниже. Полученные результаты, характеризующие организацию процесса решения задачи цианобактериальной пленкой как целостной единицы, могут служить моделью процессов организации других биосоциальных структур для решения задач.

Ссылка для цитирования

Финансирование

Работа выполнена при поддержке Минобрнауки, госзадание № 0159-2019- 0001 и 0159-2019-0009.

Фрагмент статьи

Введение новых объектов в область психологических исследований имеет большое значение для получения знаний об эволюционном генезе и разнообразии психических явлений. Такими новыми объектами могут быть микроорганизмы, начиная с прокариот. Микроорганизмы в зависимости от уровней рассмотрения представляют собой удобную модель, допускающую экспериментирование с использованием инвазивных и деструктивных методик, — в частности, регистрацию таких объективных показателей, как полевые потенциалы.

Литература
  1. Греченко Т.Н., Харитонов А.Н., Орлеанский В.К., Жегалло А.В. Новые объекты психологических исследований и перспективы развития науки // История российской психологии в лицах. Дайджест. 2017. № 6. С. 248—259.
  2. Греченко Т.Н., Харитонов А.Н., Жегалло А.В. Социальные структуры и коммуникации в мире микроорганизмов // Экспериментальная психология. 2019. Т. 12. №. 4. С. 106—119.
  3. Греченко Т.Н., Харитонов А.Н., Жегалло А.В., Александров Ю.И. Психофизиологический анализ осцилляторных процессов в поведении биосоциальных систем // Психологический журнал. 2015. Т. 36. № 5. С. 78—86.
  4. Зотов М.В., Андрианова Н.Е. Процессы координации в восприятии коммуникативного взаимодействия // Когнитивные исследования / Ред. Д.В. Ушаков, А.А. Медынцев. М.: Институт психологии РАН, 2017. С. 50—67.
  5. Ливанов М.Н Пространственная организация процессов головного мозга. М.: Наука, 1972.
  6. Магданова Л.А., Голясная Н.В. Гетерогенность как адаптивное свойство бактериальной популяции // Микробиология. 2013. Т. 82. № 1. С. 3.
  7. Николаев Ю.А., Плакунов В.К. Биопленка — город микробов или аналог многоклеточного организма // Микробиология. 2007. Т. 76. № 2. С. 149—163.
  8. Новик Г.И., Высоцкий В.В. Архитектоника популяций бифидобактерий — субмикроскопический аспект когезии клеток Bifidobacterium adolescentis и Dofidobacterium bifidum // Микробиология. 1995. Т. 64. № 2. С. 222—227.
  9. Олескин А.В. Биосоциальность одноклеточных (на материале исследований прокариот) // Журн. общей биологии, 2009. Т. 70. C. 35—60.
  10. Романова Ю.М., Смирнова Т.А., Андреев А.Л., Ильина Т.С., Диденко Л.В., Гинцбург А.Л. Образование биопленок — пример социального поведения бактерий // Микробиология. 2006. Т. 75. № 4. С. 556—561.
  11. Рыбальченко О.В. Морфо-физиологические аспекты взаимодействий микроорганизмов в микробных сообществах: дисс. д-ра биол. наук. 03.00. Спб., 2003.
  12. Сумина Е.Л. Поведение нитчатых цианобактерий в лабораторной культуре // Микробиология. 2006. Т. 75. № 4. С. 532—537.
  13. Харитонов А.Н., Греченко Т.Н., Сумина Е.Л., Сумин Д.Л., Орлеанский В.К. Социальная жизнь цианобактерий // Дифференционно-интеграционная теория развития. Кн. 2 / Ред. Н.И. Чуприкова, Е.В. Волкова. М.: Языки славянской культуры, 2014. С. 283—302.
  14. Шапиро Дж. А. Бактерии как многоклеточные организмы // В мире науки. 1988. № 8. С. 46—55.
  15. Шарова Е.В. Фазово-частотный анализ в изучении нестабильности электроэнцефалограммы // Физиология человека. 1980. Т. 6. № 2. С. 211—219.
  16. Ahn S. , Zauber E., Worth R.M., Witt Th., Rubchinsky L. L. Interaction of synchronized dynamics in cortex and basal ganglia in Parkinson’s disease // European Journal of Neuroscience. 2015. Vol. 42. P. 2164—2171.
  17. Ben-Jacob E., Cohen I., Gutnick D. Сooperative organization оf bacterial colonies: from genotype to morphotype // Annu. Rev. Microbiol. 1998. Vol. 52. P. 779—806.
  18. Bhattacharya J., Petsche H., Pereda E. Long-Range Synchrony in the Band: Role in Music Perception // Journal of Neuroscience. 2001. August 15. №. 21 (16). P. 6329—6337.
  19. Canolty R.T., Knight R.T. The functional role of cross-frequency coupling // Trends Cogn. Sci. 2010. № 14 (11). P. 506—515.
  20. Czaran T., Hoekstra R. Microbial communication, cooperation and cheating: quorum sensing drives the evolution of cooperation in bacteria // PLoS ONE. 2009. Vol. 4. № 8. P. 1—10.
  21. Dumas G., Nadel J., Soussignan R., Martinerie J., Garnero L. Inter-Brain Synchronization During Social Interaction // PLoS ONE. 2010. Vol. 5. № 8. e12166. doi.org/10.1371/journal.pone.0012166
  22. Fiegna F., Velicer G.J. Exploitative and hierarchical antagonism in a cooperative bacterium // PLoS Biol. 2005 Nov; 3(11): e370. doi.org/10.1371/journal.pbio.0030370. Epub 2005, Nov 1.
  23. Fries P. Rhythms for cognition: communication through coherence // Neuron. 2015. Vol. 88. P. 220—235.
  24. Funane T., Kiguchi M., Atsumori H., Sato H., Kubota K., Koizumi H. Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy // J. Biomed Opt. 2011. Vol. 16. № 7. 077011.
  25. Hu Yi, Hu Yi, Li X., Pan Y., Cheng X. Brain-to-brain synchronization across two persons predicts mutual prosociality // Social Cognitive and Affective Neuroscience. 2017. № 12 (12). P. 1835—1844. doi: 10.1093/ scan/nsx118
  26. Kelong Lu, Ning Hao. When do we fall in neural synchrony with others? // Social Cognitive and Affective Neuroscience. 2019. Vol 14. № 3. P. 253—261. doi.org/10.1093/scan/nsz012
  27. Kingsbury L., Huang S., Wang J., Gu K., Golshani P., Wu Y.E., Hong W. Correlated Neural Activity and Encoding of Behavior across Brains of Socially Interacting Animals // Cell. 2019. № 178. P. 429—446.
  28. Liu J., Prindle A., Humphries J., Gabalda-Sagarra M., Munehiro A., Lee D.D., Ly S., Garcia-Ojalvo J., Suel G.M. Metabolic co-dependence gives rise to collective oscillations within biofilms // Nature. 2015. Vol. 30. № 523. P. 550—554.
  29. Masi E., Ciszak M., Santopolo L., Frascella A., Giovannetti L., Marchi E., Viti C., Mancuso S. Electrical spiking in bacterial biofilms // Journal of the Royal Soc., Interface. 2015. Jan 6. № 12 (102): 20141036. doi: 10.1098/rsif.2014.1036
  30. Nutman A.P., Bennett V.C., Friend C.R.L., van Kranendonk M.J., Chivas Allan R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures // Nature. 2016. № 537 (7621). P. 535— 538. doi: 10.1038/nature19355. Epub 2016 Aug 31
  31. Oleskin A.V., Shenderov B.A. Probiotics and Psychobiotics: the Role of Microbial Neurochemicals // Nature. 2019. № 11 (4). P. 1071—1085. doi: 10.1007/s12602-019-09583-0 PMID: 31493127
  32. Shumway R.H., Stoffer D.S. Time series analysis and its applications. Springer Texts in Statistics, 2011.
  33. Shapiro J.A. The significances of bacterial colony patterns // BioEssays. 1995. Vol. 17. № 7. P. 597—607.
  34. Snyder A.C., Issar D., Smith M.A. What Does Scalp EEG Coherence Tell Us About Long-range Cortical Networks? // Eur. J. Neuroscience. 2018. № 48 (7). P. 2466—2481.
  35. Velicer G.J., Vos M. Sociobiology of the myxobacteria // Annu. Rev. Microbiol. 2009. № 63. P. 599—623.
  36. Von Bronk B., Schaffer S.A., Götz A., Opitz M. Effects of stochasticity and division of labor in toxin production on two-strain bacterial competition in Escherichia coli // PLoS Biol 15 (5): e2001457 https:// doi.org/10.1371/journal.pbio.2001457.
  37. Walter D.O. Coherence as a measure of relationship between EEG records // Electroencephalogr. Clin. Neurophysiol. 1968. Vol. 24. № 3. P. 282.
Статьи по теме
 
О проекте PsyJournals.ru

© 2007–2021 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Creative Commons License Репозиторий открытого доступа     Рейтинг репозиториев Webometrics

Яндекс.Метрика