Возможности компьютерной игры «Plines» как инструмента диагностики комплексов когнитивных способностей школьников

660

Аннотация

В статье представлены результаты эмпирического исследования взаимосвязи динамических и итоговых индивидуальных показателей эффективности игрового поведения в игре «PLines» с тестовыми измерениями общего интеллекта и дивергентной креативности (N=151). Продемонстрировано, что динамика накопления баллов в процессе игры с высокой долей вероятности позволяет отнести испытуемых к целевым группам с определенным уровнем способностей (высокие интеллект и креативность vs низкие интеллект и креативность). Другим принципиальным результатом исследования являются данные о том, что именно высокие тестовые показатели когнитивных способностей определяют эффективность игрового поведения испытуемых, а не наоборот. Предметом дискуссии выступают перспективы дальнейшего использования данной компьютерной игры в диагностике комплексов способностей, востребованных в реальной жизнедеятельности, необходимость расширения пула исследуемых психологических показателей, вносящих вклад в принятие решения в ситуации неопределенности, преимущества обращения к процессуальным характеристикам решения задач в психодиагностике.

Общая информация

Ключевые слова: компьютерные игры, игровое поведение, геймификация, когнитивные способности, психодиагностические методы в образовании

Рубрика издания: Психология образования

Тип материала: научная статья

DOI: https://doi.org/10.17759/jmfp.2018070304

Для цитаты: Марголис А.А., Куравский Л.С., Шепелева Е.А., Гаврилова Е.В., Петрова Г.А., Войтов В.К., Юркевич В.С., Ермаков С.С. Возможности компьютерной игры «Plines» как инструмента диагностики комплексов когнитивных способностей школьников [Электронный ресурс] // Современная зарубежная психология. 2018. Том 7. № 3. С. 38–52. DOI: 10.17759/jmfp.2018070304

Литература

  1. Войскунский А.Е., Богачева Н.В. Компьютерные игры и креативность: позитивные аспекты и негативные тенденции // Современная зарубежная психология. 2017. Т. 6. № 4. С. 29–40. doi:10.17759/jmfp.2017060403
  2. Войтов В.К. Многопользовательские системы психологического тестирования на основе компьютерных игр // Тезисы докладов XVI Всероссийской научной конференции "Нейрокомпьютеры и ихприменение". Москва, 2018. С. 225–226.
  3. Канеман Д. Думай медленно… решай быстро. Москва: АСР, 2014. 710 с.
  4. Корнилова Т.В. Принцип неопределенности в психологии выбора и риска [Электронный ресурс] // Психологические исследования. 2015. Т. 8. № 40. 16 с. URL: http://psystudy.ru/num/2015v8n40/1111-kornilova40.html (дата обращения: 17.09.2018).
  5. Корнилова Т.В., Чумакова М.А., Корнилов С.А. Интеллект и успешность стратегий прогнозирования при выполнении Айова–теста (igt) // Психология. Журнал Высшей Школы экономики. 2018. Т. 15. № 1. С. 10–21. doi:10.17323/1813-8918-2018-1-10-21
  6. Куравский Л.С., Баранов С.Н., Корниенко П.А. Обучаемые многофакторные сети Маркова и их применение для исследования психологических характеристик // Нейрокомпьютеры: разработка и применение, 2005. № 12. C. 65–76.
  7. Марковские модели в задачах диагностики и прогнозирования: Учеб. пособие / Под ред. Л.С. Куравского. М.: РУСАВИА, 2013. 172 с.
  8. Математические основы нового подхода к построению процедур тестирования [Электронный ресурс] / Л.С. Куравский [и др.] // Экспериментальная психология, 2012. Том 5. № 4. С. 75–98. URL: https://psyjournals.ru/files/57359/exp_2012_n4_Kuravsky.pdf (дата обращения: 17.09.2018).
  9. Проект Аврора: комплексная диагностика детской одаренности / С.А. Корнилов [и др.] // Психология. Журнал Высшей Школы экономики. 2009. Т. 6. № 3. С. 117–125.
  10. Равен Дж.К., Корт Дж.Х., Равен Дж. Руководство к Прогрессивным Матрицам Равена и Словарным Шкалам: Раздел 3: Стандартные Прогрессивные Матрицы (включая параллельные и плюс версии) / Пер. с англ. М.: Когито–Центр, 2002. 144 с.
  11. Рубцова О.В., Панфилова А.С., Артеменков С.Л. Исследование взаимосвязи личностных особенностей игроков подросткового и юношеского возраста с их поведением в виртуальном про­странстве (на примере групповой компьютерной игры «Dota 2») // Психологическая наука и образование. 2018. Т. 23. № 1. C. 137–148. doi:10.17759/pse.2018230112
  12. Сорокова М.Г., Ермаков С.С. Гендерные особенности развития интеллекта учеников VI–X классов [Электронный ресурс] // Психологическая наука и образование psyedu.ru. 2014. Т. 6. № 4. С. 56–70. doi:10.17759/psyedu.2014060406
  13. Эльконин Д.Б. Детская психология: учебное пособие для студентов высших учебных заведений / Д.Б. Эльконин; ред.–сост. Б. Д. Эльконин. – 4–е изд., стер. – М.: Издательский центр «Академия», 2007. 384 с.
  14. A Literature Review of Gaming in Education / K.L. McClarty [et al.] // Gaming in education. 2012. p. 1–35.
  15. A New Technique for Testing Professional Skills and Competencies and Examples of its Practical Applications / L.S. Kuravsky [et al.] // Applied Mathematical Sciences. 2015. Vol. 9. № 21. P. 1003–1026. doi:10.12988/ams.2015.411899
  16. Barkl S., Porter A., Ginns P. Cognitive training for children: Effects on inductive reasoning, deductive reasoning, and mathematics achievement in an Australian school setting // Psychology in the Schools. 2012. Vol. 49. № 9. P. 828–842. doi:10.1002/pits.21638
  17. Blackwell T. Test Review: Woodcock R.W., McGrew K.S., & Mather N. Woodcock–Johnson III Test. Riverside Publishing Company. Itasca, IL // Rehabilitation Counseling Bulletin. 2001. Vol. 44. № 4. P. 232–235. doi:10.1177/003435520104400407
  18. Chu M.W., Chiang A. Raging Skies: Development of a Digital Game-Based Science Assessment using Evidence-Centered Game Design [Электронный ресурс] // Alberta Science education journal. 2018. Vol. 45. № 2. P. 37–47. URL: https://prism.ucalgary.ca/bitstream/handle/1880/107765/Raging%20Skies%20Development%20of%20a%20Digital%20Game-Based%20Science%20Assessment%20Using%20Evidence-Centred%20Game%20Design.pdf?sequence=1&isAllowed=y (дата обращения: 17.09.2018).
  19. Content Validity of Game-based Assessment: Case study of a Serious Game for ICT managers in training / H.G.K. Hummel [et al.] // Technology, Pedagogy and Education. 2017. Vol. 26. № 2. P. 225–240. doi:10.1080/1475939X.2016.1192060
  20. Gamelike features might not improve data / G.E. Hawkins [et al.] // Behavior Research Methods. 2013. Vol. 45. № 2. P. 301–318. doi:10.3758/s13428–012–0264–3
  21. Gamification of Cognitive Assessment and Cognitive Training: A Systematic Review of Applications and Efficacy / J. Lumsden [et al.] // JMIR Serious Games. 2016. Vol. 4. № 2. 14 p. doi:10.2196/games.5888
  22. IfenthalerD., Deniz E., Xun E. Assessment in Game-Based Learning: Foundations, Innovations, and Perspectives. New York; London: Springer Press, 2012. 257 p.
  23. Kuravsky L.S., Baranov S.N. The concept of multifactor Markov networks and its application to forecasting and diagnostics of technical systems // Proc. Condition Monitoring 2005. United Kingdom, Cambridge, 2005. P. 111–117.
  24. McPherson J., Burns N.R. Assessing the validity of computer-game-like tests of processing speed and working memory // Behavior Research Methods. 2008. Vol. 40. № 4. P. 969–981. doi:10.3758/BRM.40.4.969
  25. Monster Mischief: Designing a Video Game to Assess Selective Sustained Attention / K.E. Godwin [et al.] // International Journal of Gaming and Computer-Mediated Simulations. 2015. Vol. 7. № 4. P. 18–39. doi:10.4018/IJGCMS.2015100102
  26. Shute V.J., Ke F., Wang L. Assessment and Adaptation in Games // Instructional Techniques to Facilitate Learning and Motivation of Serious Games / Eds. P. Wouters, H. Van Oostendorp. Cham, Switzerland : Springer, 2016. P. 59–78. doi:10.1007/978-3-319-39298-1_4
  27. Shute V.J., Ventura M., Ke F. The power of play: The effects of Portal 2 and Lumosity on cognitive and noncognitive skills // Computers and education. 2015. Vol. 80. P. 58–67. doi:10.1016/j.compedu.2014.08.013
  28. Sternberg R.J. The Theory of Successful Intelligence // Review of General Psychology. 1999. Vol. 3. № 4. P. 292–316.
  29. The effects of gamelike features and test location on cognitive test performance and participant enjoyment / J. Lumsden [et al.] // PeerJ. 2016. № 4. e2184. 15 p. doi:10.7717/peerj.2184

Информация об авторах

Марголис Аркадий Аронович, кандидат психологических наук, доцент, ректор, профессор кафедры педагогической психологии, Московский государственный психолого-педагогический университет (ФГБОУ ВО МГППУ), Москва, Россия, ORCID: https://orcid.org/0000-0001-9832-0122, e-mail: margolisaa@mgppu.ru

Куравский Лев Семенович, доктор технических наук, профессор, декан факультета информационных технологий, Московский государственный психолого-педагогический университет (ФГБОУ ВО МГППУ), Москва, Россия, ORCID: https://orcid.org/0000-0002-3375-8446, e-mail: l.s.kuravsky@gmail.com

Шепелева Елена Андреевна, кандидат психологических наук, старший научный сотрудник сектора «Центр когнитивных исследований цифровой образовательной среды» ЦМИСД, Московский государственный психолого-педагогический университет (ФГБОУ ВО МГППУ), Москва, Россия, ORCID: https://orcid.org/0000-0001-9867-6524, e-mail: shepelevaea@mgppu.ru

Гаврилова Евгения Викторовна, кандидат психологических наук, научный сотрудник, Центр прикладных психолого-педагогических исследований, Московский государственный психолого-педагогический университет (ФГБОУ ВО МГППУ), Москва, Россия, ORCID: https://orcid.org/0000-0003-0848-3839, e-mail: gavrilovaev@mgppu.ru

Петрова Галина Александровна, кандидат психологических наук, доцент, младший научный сотрудник сектора диагностики одаренности, ФГБОУ ВО МГППУ, Москва, Россия, ORCID: https://orcid.org/0000-0002-4931-8728, e-mail: kharlashina-galina@yandex.ru

Войтов Владимир Кузьмич, кандидат технических наук, профессор факультета информационных технологий, Московский государственный психолого-педагогический университет (ФГБОУ ВО МГППУ), Москва, Россия, ORCID: https://orcid.org/0000-0001-6486-3049, e-mail: vojtovvk@mgppu.ru

Юркевич Виктория Соломоновна, кандидат психологических наук, профессор кафедры возрастной психологии им. Л.Ф. Обуховой факультета психологии образования, ФГБОУ ВО МГППУ, Москва, Россия, ORCID: https://orcid.org/0000-0002-3575-7586, e-mail: vinni-vi@mail.ru

Ермаков Сергей Сергеевич, кандидат психологических наук, старший научный сотрудник лаборатории «Информационные технологии для психологической диагностики», доцент кафедры «Возрастная психология имени профессора Л.Ф. Обуховой» факультета «Психология образования», доцент кафедры «Прикладная математика» факультета «Информационные технологии», Московский государственный психолого-педагогический университет (ФГБОУ ВО МГППУ), Москва, Россия, ORCID: https://orcid.org/0000-0003-4330-2618, e-mail: ermakovss@mgppu.ru

Метрики

Просмотров

Всего: 1718
В прошлом месяце: 5
В текущем месяце: 0

Скачиваний

Всего: 660
В прошлом месяце: 4
В текущем месяце: 0