Современная зарубежная психология
2020. Том 9. № 3. С. 34–46
doi:10.17759/jmfp.2020090303
ISSN: 2304-4977 (online)
Персонализация в образовании: от программируемого к адаптивному обучению
Аннотация
Общая информация
Ключевые слова: адаптивное обучение, программируемое обучение, обзор литературы, адаптивные образовательные платформы
Рубрика издания: Психология образования
Тип материала: обзорная статья
DOI: https://doi.org/10.17759/jmfp.2020090303
Финансирование. Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-113-50415
Для цитаты: Кравченко Д.А., Блескина И.А., Каляева Е.Н., Землякова Е.А., Аббакумов Д.Ф. Персонализация в образовании: от программируемого к адаптивному обучению [Электронный ресурс] // Современная зарубежная психология. 2020. Том 9. № 3. С. 34–46. DOI: 10.17759/jmfp.2020090303
Литература
- Ланда Л.Н. Алгоритмизация в обучении. М.: Просвещение, 1966. 524 с.
- Талызина Н.Ф. Теоретические проблемы программированного обучения. М.: МГУ, 1969. 132 с.
- A tutorial on machine learning in educational science / L. Kidzinski [et al.] // State-of-the-Art and Future Directions of Smart Learning (Lecture Notes in Educational Technology) / Eds. Y. Li [et al.]. Singapore: Springer, 2015. P. 453–459.
- Abbakumov D., Desmet P., Van den Noortgate W. Measuring growth in students’ proficiency in MOOCs: Two component dynamic extensions for the Rasch model // Behavior Research Methods. 2019. Vol. 51. № 1. P. 332–341. DOI:10.3758/s13428-018-1129-1
- Adaptive learning path recommender approach using auxiliary learning objects / A.H. Nabizadeh [et al.] // Computers & Education. 2020. Vol. 147. P. 1–17. DOI:10.1016/j.compedu.2019.103777
- Adaptive Social Learning Management System to Develop University Students Achievement / A.H. Nabih [et al.] // Egyptian Computer Science Journal. 2020. Vol. 44. № 1. P. 35–47.
- Aghababyan A., Lewkow N., Baker R.S. Enhancing the Clustering of Student Performance Using the Variation in Confidence // Proceedings of International Conference on Intelligent Tutoring Systems. Cham: Springer, 2018. P. 274–279.
- Ahead of the curve: Implementation challenges in personalized learning school models / A.J. Bingham [et al.] // Educational Policy. 2018. Vol. 32. № 3. P. 454–489. DOI:10.1177/0895904816637688
- Bloom B.S. The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring // Educational researcher. 1984. Vol. 13. № 6. P. 4–16. DOI:10.2307/1175554
- Boyce S., O’Halloran J. Active Learning in Computer-based College Algebra // Primus. 2020. Vol. 30. № 4. P. 458–474. DOI:10.1080/10511970.2019.1608487
- Brusilovsky P. Adaptive Educational Hypermedia [Электронный ресурс] // Proceedings of Tenth International PEG conference: Tampere, Finland, 23–26 June 2001. Tampere, 2001. P. 8–12. URL: https://pitt.edu/~peterb/papers/PEG01.pdf (дата обращения: 20.07.2020).
- Can we calm first-year student’s «neuroscience anxiety» with adaptive learning resources? A pilot study [Электронный ресурс] / K. Linden [et al.] // Proceedings of ASCILITE 2018: Open Oceans: Learning without borders. Geelong, 2018. P. 451–455. URL: https://researchoutput.csu.edu.au/en/publications/can-we-calm-first-year-students-neuroscience-anxiety-with-adaptiv (дата обращения: 20.07.2020).
- Carbonell J.R. AI in CAI: An Artificial-intelligence Approach to Computer Assisted Instruction // IEEE Transactions on Man-Machine Systems. 1970. Vol. 11. № 4. P. 190–202. DOI:10.1109/TMMS.1970.299942
- Chen C.M., Liu C.Y., Chang M.H. Personalized curriculum sequencing utilizing modified item response theory for web-based instruction // Expert Systems with Applications. 2006. Vol. 30. № 2. P. 378–396. DOI:10.1016/j.eswa.2005.07.029
- Chiu T.K.F., Mok I.A.C. Learner expertise and mathematics different order thinking skills in multimedia learning // Computers & Education. 2017. Vol. 107. P. 147–164. DOI:10.1016/j.compedu.2017.01.008
- Chrysafiadi K., Troussas C., Virvou M. A Framework for Creating Automated Online Adaptive Tests Using Multiple-Criteria Decision Analysis // Proceedings of 2018 IEEE International Conference on Systems, Man, and Cybernetics: Miyazaki, Japan, 7–10 October 2018. Miyazaki: IEEE, 2018. P. 226–231. DOI:10.1109/SMC.2018.00049
- Clark R.M., Kaw A., Delgado E.E. Board 69: Do Adaptive Lessons for Pre-class Experience Improve Flipped Learning? [Электронный ресурс] // 2018 ASEE Annual Conference & Exposition: Salt Lake City, Utah, June 2018. Salt Lake City: American Society for Engineering Education, 2018. 13 p. URL: https://peer.asee.org/30088 (дата обращения: 20.07.2020).
- Crowder N.A. Automatic tutoring by means of intrinsic programming // Automatic teaching: The state of the art / E. Galanter (Ed.). New York: Wiley, 1959. P. 109–116.
- Digital identity and e-reputation: Showcasing an adaptive eLearning module to develop students’ digital literacies / R. Al-Mahmood [et al.] // Proceedings of 35th International Conference of Innovation, Practice and Research in the use of Educational Technologies in Tertiary Education: Deakin University, Geelong, Australia, 25–28 November 2018. Geelong: Deakin University, 2018. P. 25–34.
- Farmer E.C., Catalano A.J., Halpern A.J. Exploring Student Preference between Textbook Chapters and Adaptive Learning Lessons in an Introductory Environmental Geology Course // TechTrends. 2020. Vol. 64. P. 150–157. DOI:10.1007/s11528-019-00435-w
- Fautch J.M. Adaptive Learning Technology in General Chemistry: Does It Support Student Success? // Enhancing Retention in Introductory Chemistry Courses: Teaching Practices and Assessments / Eds. S.K. Hartwell, T. Gupta. American Chemical Society, 2019. P. 91–104. DOI:10.1021/bk-2019-1330.ch006
- Galperin P.I. Stage-by-stage formation as a method of psychological investigation // Journal of Russian and East European Psychology. 1992. Vol. 30. № 4. P. 60–80. DOI:10.2753/RPO1061-0405300460
- Homework Methods in Engineering Mechanics: Part 3 [Электронный ресурс] / D.J. Lura [et al.] // ASEE Annual Conference & Exposition. 2017. 7 p. URL: https://www.semanticscholar.org/paper/Homework-Methods-in-Engineering-Mechanics%3A-Part-3-Lura-Badir/4ed7355e8e6d193ce58f68388bb3f89245d1c5da (дата обращения: 20.07.2020).
- Hssina B., Erritali M. A Personalized Pedagogical Objectives Based on a Genetic Algorithm in an Adaptive Learning System // Procedia Computer Science. 2019. Vol. 151. P. 1152–1157. DOI:10.1016/j.procs.2019.04.164
- Identification of personal traits in adaptive learning environment: Systematic literature review / N.B.A. Normadhi [et al.] // Computers & Education. 2019. Vol. 130. P. 168–190. DOI:10.1016/j.compedu.2018.11.005
- Kerr P. Adaptive learning // ETL Journal. 2016. Vol. 70. № 1. P. 88–93. DOI:10.1093/elt/ccv055
- Lowendahl J.M., Thayer T.L.B., Morgan G. Top 10 strategic technologies impacting higher education in 2016 [Электронный ресурс] // Gartner Research. 2016. URL: https://www.academia.edu/29441505/Top_10_Strategic_Technologies_Impacting_Higher_Education_in (дата обращения: 20.07.2020).
- Martin F., Markant D. Adaptive learning modules // The SAGE encyclopedia of higher education / M.E. David, M.J. Amey (Eds.). London: Sage, 2020. P. 2–4.
- Matayoshi J., Cosyn E. Identifying Student Learning Patterns with Semi-Supervised Machine Learning Models // Proceedings of the 26th International Conference on Computers in Education / Eds. J.C. Yang [et al.]. 2018. P. 11–20.
- Maximizing the Adaptive Learning Technology Experience [Электронный ресурс] / B. Forsyth [et al.] // Journal of Higher Education Theory and Practice. 2016. Vol. 16. № 4. P. 80–88. URL: https://www.articlegateway.com/index.php/JHETP/article/view/1992/1892 (дата обращения: 20.07.2020).
- Natriello G. The Adaptive Learning Landscape [Электронный ресурс] // Teachers College Record. 2017. Vol. 119. № 3. 46 p. URL: https://cdn.tc-library.org/Rhizr/Files/sHzT6ngX98NEDhAP8/files/38_21830.pdf (дата обращения: 20.07.2020).
- Online Learning Persistence and Academic Achievement [Электронный ресурс] / Y. Fang [et al.] // Proceedings of the 10th International Conference on Educational Data Mining: Wuhan, China, 25–28 June 2017. Wuhan: ERIC, 2017. P. 312–317. URL: https://files.eric.ed.gov/fulltext/ED596512.pdf#page=333 (дата обращения: 20.07.2020).
- Pask G. Electronic keyboard teaching machines // Education and Commerce. 1958. Vol. 24. P. 16–26.
- Reddy S., Labutov I., Joachims T. Learning student and content embeddings for personalized lesson sequence recommendation // Proceedings of the Third (2016) ACM Conference on Learning: Edinburgh, Scotland UK, April 25–26. Edinburgh, 2016. P. 93–96. DOI:10.1145/2876034.2893375
- Skinner B.F. Teaching Machines // Science. 1958. Vol. 128. № 3330. P. 969–977. DOI:10.1126/science.128.3330.969
- SKOPE-IT (Shareable Knowledge Objects as Portable Intelligent Tutors): overlaying natural language tutoring on an adaptive learning system for mathematics / B.D. Nye [et al.] // International journal of STEM education. 2018. Vol. 5. № 12. P. 1–20. DOI:10.1186/s40594-018-0109-4
- Student learning strategies and behaviors to predict success in an online adaptive mathematics tutoring system / J. Xie [et al.] // Proceedings of the 10th International Conference on Educational Data Mining. 2017. P. 460–465.
- Sun Q., Norman T.J., Abdourazakou Y. Perceived value of interactive digital textbook and adaptive learning: Implications on student learning effectiveness // Journal of Education for Business. 2018. Vol. 93. № 7. P. 323–331. DOI:10.1080/08832323.2018.1493422
- The utility of adaptive eLearning in cervical cytopathology education / T.D. Samulski [et al.] // Cancer cytopathology. 2018. Vol. 126. № 2. P. 129–135. DOI:10.1002/cncy.21942
- Wang Y., Liao H.C. Adaptive learning for ESL based on computation // British Journal of Educational Technology. 2011. Vol. 42. № 1. P. 66–87. DOI:10.1111/j.1467-8535.2009.00981.x
- Wauters K., Desmet P., Van Den Noortgate W. Item difficulty estimation: An auspicious collaboration between data and judgment // Computers & Education. 2012. Vol. 58. № 4. P. 1183–1193. DOI:10.1016/j.compedu.2011.11.020
- Wenger E. Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan Kaufmann Publisher, 1987. 485 p.
- Yudelson M., Koedinger K.R., Gordon G.J. Individualized bayesian knowledge tracing models // In Proceedings of 16th International Conference on Artificial Intelligence in Education (AIED 2013). Springer, 2013. P. 171–180. DOI:10.1007/978-3-642-39112-5_18
- Zhong J. Actively Engage Students with Diverse Background Using a More Personalized Approach // IEEE Frontiers in Education Conference (FIE): San Jose, CA, USA, 3–6 Oct. 2018. San Jose: IEEE, 2018. P. 1–5. DOI:10.1109/FIE.2018.8658485
Информация об авторах
Метрики
Просмотров HTML-версии за весь период: 977
Просмотров HTML-версии в прошлом месяце: 15
Просмотров HTML-версии в текущем месяце: 7
Скачиваний PDF-версии за весь период: 847
Скачиваний PDF-версии в прошлом месяце: 4
Скачиваний PDF-версии в текущем месяце: 4