Генетические ассоциации ангедонии: новые аспекты взаимосвязи психических и соматических расстройств

9

Аннотация

ВВЕДЕНИЕ: Ангедония характеризуется снижением способности предвосхищать, испытывать и/или усваивать удовольствие. Этот феномен имеет трансдиагностическую природу и является одним из ключевых симптомов расстройств настроения, шизофрении, аддикций и соматических состояний.

ЦЕЛЬ: Оценить генетическую архитектуру ангедонии и её перекрытие с другими психическими расстройствами и соматическими состояниями.

МЕТОДЫ: Проведено исследование полногеномного поиска ассоциаций ангедонии на выборке из 4 520 человек из российской неклинической популяции. Используя доступную сводную статистику, мы рассчитали шкалы полигенного риска (polygenic risk scores, PRS), чтобы исследовать генетическую связь между ангедонией и другими психиатрическими или соматическими фенотипами.

РЕЗУЛЬТАТЫ: Не было идентифицировано ни одного варианта, достигшего полногеномного уровня значимости. PRS для депрессии, биполярного расстройства и шизофрении были значимо ассоциированы с ангедонией. И наоборот, не обнаружено значимых ассоциаций между PRS для тревожных расстройств и ангедонии, что хорошо согласуется с существующими клиническими данными. Ни один из PRS для соматических фенотипов не достиг уровня значимости после коррекции на множественные сравнения. При номинальном уровне значимости ассоциация с ангедонией выявлена для PRS ω-3 жирных кислот, сахарного диабета 2-го типа и болезни Крона.

ЗАКЛЮЧЕНИЕ: Ангедония имеет сложную полигенную архитектуру, в связи с чем её присутствие при соматических заболеваниях или нормальных состояниях может быть обусловлено генетической предрасположенностью к расстройствам настроения или шизофрении.

Общая информация

Ключевые слова: ангедония, депрессия, биполярное расстройство, шизофрения, риски

Рубрика издания: Исследования

Тип материала: научная статья

DOI: https://doi.org/10.17816/CP15494

Получена: 10.01.2024

Принята в печать:

Для цитаты: Касьянов Е.Д., Пинахина Д.В., Ракитько А.С., Вергасова Е., Ермакович Д.П., Рукавишников Г.В., Малышко Л.В., Попов Я.В., Коваленко Е.В., Ильинская А.Ю., Ким А.А., Плотников Н.А., Незнанов Н.Г., Ильинский В.В., Кибитов А.О., Мазо Г.Э. Генетические ассоциации ангедонии: новые аспекты взаимосвязи психических и соматических расстройств // Consortium Psychiatricum. 2024. Том 5. № 2. С. 5–15. DOI: 10.17816/CP15494

Дополнительные материалы

С приложениями к статье можно ознакомиться на сайте Журнала https://doi.org/10.17816/CP15494

Литература

  1. Craske MG, Meuret AE, Ritz T, et al. Treatment for Anhedonia: A neuroscience driven approach. Depress Anxiety. 2016;33(10):927–38. doi: 10.1002/da.22490
  2. Der-Avakian A, Markou A. The neurobiology of Anhedonia and other reward-related deficits. Trends Neurosci. 2012;35(1):68–77. doi: 10.1016/j.tins.2011.11.005
  3. Husain M, Roiser JP. Neuroscience of apathy and Anhedonia: a transdiagnostic approach. Nat Rev Neurosci. 2018;19(8):470–84. doi: 10.1038/s41583-018-0029-9
  4. Kibitov AO, Mazo GE. [Anhedonia in depression: neurobiological and genetic aspects]. Zh Nevrol Psikhiatr Im SS Korsakova. 2021;121(3):146–54. doi: 10.17116/jnevro2021121031146. Russian.
  5. Ducasse D, Loas G, Dassa D, et al. Anhedonia is associated with suicidal ideation independently of depression: A meta-analysis. Depress Anxiety. 2018;35(5):382–92. doi: 10.1002/da.22709
  6. Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126. doi: 10.1186/1741-7015-11-126
  7. Liu WH, Roiser JP, Wang LZ, et al. Anhedonia is associated with blunted reward sensitivity in first-degree relatives of patients with major depression. J Affect Disord. 2016;190:640–8. doi: 10.1016/j.jad.2015.10.050
  8. Guffanti G, Kumar P, Admon R, et al. Depression genetic risk score is associated with Anhedonia-related markers across units of analysis. Transl Psychiatry. 2019;9(1):236. doi: 10.1038/s41398-019-0566-7
  9. Xu C, Chen J, Cui Z, et al. Abnormal Anhedonia as a potential endophenotype in obsessive-compulsive disorder. Neuropsychiatr Dis Treat. 2020;16:3001–10. doi: 10.2147/NDT.S268148
  10. Hatzigiakoumis DS, Martinotti G, Giannantonio MD, Janiri L. Anhedonia and substance dependence: clinical correlates and treatment options. Front Psychiatry. 2011;2:10. doi: 10.3389/fpsyt.2011.00010
  11. Gorwood P. Neurobiological mechanisms of Anhedonia. Dialogues Clin Neurosci. 2008;10(3):291–9. doi: 10.31887/DCNS.2008.10.3/pgorwood
  12. Zhang B, Lin P, Shi H, et al. Mapping Anhedonia-specific dysfunction in a transdiagnostic approach: an ALE meta-analysis. Brain Imaging Behav. 2016;10(3):920–39. doi: 10.1007/s11682-015-9457-6
  13. Pizzagalli DA, Holmes AJ, Dillon DG, et al. Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry. 2009;166(6):702–10. doi: 10.1176/appi.ajp.2008.08081201
  14. Carter J, Swardfager W. Mood and metabolism: Anhedonia as a clinical target in Type 2 diabetes. Psychoneuroendocrinology. 2016;69:123–32. doi: 10.1016/j.psyneuen.2016.04.002
  15. Hamer JA, Testani D, Mansur RB, et al. Brain insulin resistance: A treatment target for cognitive impairment and Anhedonia in depression. Exp Neurol. 2019;315:1–8. doi: 10.1016/j.expneurol.2019.01.016
  16. Trøstheim M, Eikemo M, Meir R, et al. Assessment of Anhedonia in adults with and without mental illness: A systematic review and meta-analysis. JAMA Netw Open. 2020;3(8):e2013233. doi: 10.1001/jamanetworkopen.2020.13233
  17. Pelle AJ, Pedersen SS, Erdman RAM, et al. Anhedonia is associated with poor health status and more somatic and cognitive symptoms in patients with coronary artery disease. Qual Life Res. 2011;20(5):643–51. doi: 10.1007/s11136-010-9792-4
  18. Ren H, Fabbri C, Uher R, et al. Genes associated with Anhedonia: a new analysis in a large clinical trial (GENDEP). Transl Psychiatry. 2018;8(1):150. doi: 10.1038/s41398-018-0198-3
  19. Pain O, Dudbridge F, Cardno AG, et al. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet. 2018;177(4):416–25. doi: 10.1002/ajmg.b.32630
  20. Ortega-Alonso A, Ekelund J, Sarin AP, et al. Genome-wide association study of psychosis proneness in the finnish population. Schizophr Bull. 2017;43(6):1304–14. doi: 10.1093/schbul/sbx006
  21. Ward J, Lyall LM, Bethlehem RAI, et al. Novel genome-wide associations for Anhedonia, genetic correlation with psychiatric disorders, and polygenic association with brain structure. Transl Psychiatry. 2019;9(1):327. doi: 10.1038/s41398-019-0635-y
  22. Kibitov AO, Mazo GE, Rakitko AS, et al. [GWAS-based polygenic risk scores for depression with clinical validation: methods and study design in the Russian population]. Zh Nevrol Psikhiatr Im SS Korsakova. 2020;120(11):131–40. doi: 10.17116/jnevro2020120111131. Russian.
  23. Kasyanov ED, Verbitskaya EV, Rakitko AS, et al. [Validation of a DSM-5-based screening test using digital phenotyping in the Russian population]. Zh Nevrol Psikhiatr Im SS Korsakova. 2022; 122(6. Vyp. 2):64–70. doi: 10.17116/jnevro202212206264. Russian.
  24. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81(5):1084–97. doi: 10.1086/521987
  25. Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi: 10.1038/nature15393
  26. McCarthy S, Das S, Kretzschmar W, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279–83. doi: 10.1038/ng.3643
  27. Marees AT, de Kluiver H, Stringer S, et al. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int J Methods Psychiatr Res. 2018;27(2):e1608. doi: 10.1002/mpr.1608
  28. Chang CC, Chow CC, Tellier LC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7. doi: 10.1186/s13742-015-0047-8
  29. Cingolani P, Platts A, Wang le L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92. doi: 10.4161/fly.19695
  30. Kasyanov ED, Pinakhina DV, Rakitko AS, et al. [Anhedonia in mood disorders and somatic diseases: results of exploratory Mendelian randomization analysis]. Zh Nevrol Psikhiatr Im SS Korsakova. 2023;123(4. Vyp. 2):65–73. doi: 10.17116/jnevro202312304265. Russian.
  31. Grote S, Prüfer K, Kelso J, Dannemann M. ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain. Bioinformatics. 2016;32(20):3201–3. doi: 10.1093/bioinformatics/btw392
  32. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489(7416):391–9. doi: 10.1038/nature11405
  33. Kessler RC, Petukhova M, Sampson NA, et al. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int J Methods Psychiatr Res. 2012;21(3):169–84. doi: 10.1002/mpr.1359
  34. Choi SW, Mak TSH, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15(9):2759–72. doi: 10.1038/s41596-020-0353-1
  35. Clark LA, Watson D. Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. J Abnorm Psychol. 1991;100(3):316–36. doi: 10.1037//0021-843x.100.3.316
  36. Liao A, Walker R, Carmody TJ, et al. Anxiety and Anhedonia in depression: Associations with neuroticism and cognitive control. J Affect Disord. 2019;245:1070–8. doi: 10.1016/j.jad.2018.11.072
  37. Appleton KM, Voyias PD, Sallis HM, et al. Omega-3 fatty acids for depression in adults. Cochrane Database Syst Rev. 2015(11):CD004692. doi: 10.1002/14651858.CD004692.pub4
  38. Roy T, Lloyd CE. Epidemiology of depression and diabetes: a systematic review. J Affect Disord. 2012;142 Suppl:S8–21. doi: 10.1016/S0165-0327(12)70004-6
  39. Barberio B, Zamani M, Black CJ, et al. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2021;6(5):359–70. doi: 10.1016/S2468-1253(21)00014-5
  40. Pan A, Sun Q, Okereke OI, et al. Depression and risk of stroke morbidity and mortality: a meta-analysis and systematic review. JAMA. 2011;306(11):1241–9. doi: 10.1001/jama.2011.1282. Erratum in: JAMA. 2011;306(23):2565.
  41. Mullins N, Forstner AJ, O’Connell KS, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53(6):817–29. doi: 10.1038/s41588-021-00857-4
  42. Fabbri C, Kasper S, Kautzky A, et al. Genome-wide association study of treatment-resistance in depression and meta-analysis of three independent samples. Br J Psychiatry. 2019;214(1):36–41. doi: 10.1192/bjp.2018.256
  43. Fjukstad KK, Athanasiu L, Bahrami S, et al. Genetic variants associated with cardiometabolic abnormalities during treatment with selective serotonin reuptake inhibitors: a genome-wide association study. Pharmacogenomics J. 2021;21(5):574–85. doi: 10.1038/s41397-021-00234-8
  44. Ortega-Azorín C, Coltell O, Asensio EM, et al. Candidate Gene and genome-wide association studies for circulating leptin levels reveal population and sex-specific associations in high cardiovascular risk Mediterranean subjects. Nutrients. 2019;11(11):2751. doi: 10.3390/nu11112751
  45. Wood AR, Esko T, Yang J, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46(11):1173–86. doi: 10.1038/ng.3097
  46. Wojcik GL, Graff M, Nishimura KK, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570:514–8. doi: 10.1038/s41586-019-1310-4
  47. Wootton RE, Richmond RC, Stuijfzand BG, et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol Med. 2020;50(14):2435–43. doi: 10.1017/S0033291719002678
  48. Mills MC, Tropf FC, Brazel DM, et al. Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nat Hum Behav. 2021;5(12):1717–30. doi: 10.1038/s41562-021-01135-3
  49. Kulminski AM, Loiko E, Loika Y, Culminskaya I. Pleiotropic predisposition to Alzheimer’s disease and educational attainment: insights from the summary statistics analysis. Geroscience. 2022;44(1):265–80. doi: 10.1007/s11357-021-00484-1
  50. Bogdan R, Pizzagalli DA. The heritability of hedonic capacity and perceived stress: a twin study evaluation of candidate depressive phenotypes. Psychol Med. 2009;39(2):211–8. doi: 10.1017/S0033291708003619
  51. Bolzetta F, Veronese N, Stubbs B, et al. The relationship between dietary vitamin K and depressive symptoms in late adulthood: A cross-sectional analysis from a large cohort study. Nutrients. 2019;11(4):787. doi: 10.3390/nu11040787
  52. Duric V, Banasr M, Licznerski P, et al. A negative regulator of MAP kinase causes depressive behavior. Nat Med. 2010;16(11):1328–32. doi: 10.1038/nm.2219
  53. Liu YX, Wang J, Guo J, et al. DUSP1 is controlled by p53 during the cellular response to oxidative stress. Mol Cancer Res. 2008;6(4):624–33. doi: 10.1158/1541-7786.MCR-07-2019
  54. Catani M. The anatomy of the human frontal lobe. Handb Clin Neurol. 2019;163:95–122. doi: 10.1016/B978-0-12-804281-6.00006-9
  55. Luby JL, Agrawal A, Belden A, et al. Developmental trajectories of the orbitofrontal cortex and Anhedonia in middle childhood and risk for substance use in adolescence in a longitudinal sample of depressed and healthy preschoolers. Am J Psychiatry. 2018;175(10):1010–21. doi: 10.1176/appi.ajp.2018.17070777
  56. Samara Z, Evers EAT, Peeters F, et al. Orbital and medial prefrontal cortex functional connectivity of major depression vulnerability and disease. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(4):348–357. doi: 10.1016/j.bpsc.2018.01.004
  57. Zhang Y-J, Cai X-L, Hu H-X, et al. Social brain network predicts real-world social network in individuals with social Anhedonia. Psychiatry Res Neuroimaging. 2021;317:111390. doi: 10.1016/j.pscychresns.2021.111390

Информация об авторах

Касьянов Евгений Дмитриевич, Младший научный сотрудник отделения социальной нейропсихиатрии, ФГБУ «Национальный медицинский исследовательский центр психиатрии и неврологии им. В.М. Бехтерева» Минздрава России, Санкт-Петербург, Россия, ORCID: https://orcid.org/0000-0002-4658-2195, e-mail: ohkasyan@yandex.ru

Пинахина Дарья Владимировна, ФГБУ «Национальный медицинский исследовательский центр психиатрии и неврологии им. В.М. Бехтерева» Минздрава России, ФГАОУ ВО «Национальный исследовательский университет ИТМО» , Санкт-Петербург, Россия, ORCID: https://orcid.org/0000-0001-9896-6556, e-mail: i@kasyan.ru

Ракитько Александр Сергеевич, кандидат физико-математических наук, ФГБУ «Национальный медицинский исследовательский центр психиатрии и неврологии им. В.М. Бехтерева» Минздрава России, ООО «Генотек», Стажер-исследователь: Факультет компьютерных наук / Институт искусственного интеллекта и цифровых наук / Международная лаборатория биоинформатики Приглашенный преподаватель: Факультет компьютерных наук / Департамент больших данных и информационного поиска, Санкт-Петербург, Россия, ORCID: https://orcid.org/0000-0003-0567-7734, e-mail: i@kasyan.ru

Вергасова Екатерина, ООО «Генотек», Москва, Россия, ORCID: https://orcid.org/0000-0003-0823-0540, e-mail: i@kasyan.ru

Ермакович Донат Павлович, ООО «Генотек», Москва, Россия, ORCID: https://orcid.org/0000-0002-0712-6939

Рукавишников Григорий Викторович, ведущий научный сотрудник, руководитель отдела социальной нейропсихиатрии, ФГБУ «Национальный медицинский исследовательский центр психиатрии и неврологии им. В.М. Бехтерева», Санкт-Петербург, Россия, ORCID: https://orcid.org/0000-0002-5282-2036, e-mail: bizet@inbox.ru

Малышко Лариса Владимировна, Младший научный сотрудник научно-организационного отделения Врач-психиатр, ФГБУ «Национальный медицинский исследовательский центр психиатрии и неврологии им. В.М. Бехтерева» Минздрава России, Санкт-Петербург, Россия, ORCID: https://orcid.org/0000-0002-5470-4359

Попов Ярослав Вячеславович, ООО «Генотек», Москва, Россия, ORCID: https://orcid.org/0000-0001-7538-123X

Коваленко Елена Владимировна, ООО «Генотек», Москва, Россия, ORCID: https://orcid.org/0000-0001-5678-6557

Ильинская Анна Юрьевна, Заведующий лабораторией, Eligens SIA, ORCID: https://orcid.org/0000-0001-7524-5617

Ким Анна Александровна, ООО «Генотек», Москва, Россия, ORCID: https://orcid.org/0000-0003-4077-4740

Плотников Николай Анатольевич, ООО «Генотек», Москва, Россия, ORCID: https://orcid.org/0000-0001-5585-0035

Незнанов Николай Григорьевич, доктор медицинских наук, НМИЦ ПН им. В.М. Бехтерева, ПСПбГМУ им. И.В. Павлова , Россия, ORCID: https://orcid.org/0000-0001-5618-4206, e-mail: spbinstb@bekhterev.ru

Ильинский Валерий Владимирович, ООО «Генотек», Москва, Россия, ORCID: https://orcid.org/0000-0003-4377-2759

Кибитов Александр Олегович, доктор медицинских наук, главный научный сотрудник отделения геномики психических расстройств, Национальный медицинский исследовательский центр психиатрии и неврологии имени В.М. Бехтерева (ФГБУ НМИЦ ПН им. В.М. Бехтерева МЗ РФ), Санкт-Петербург, Россия, ORCID: https://orcid.org/0000-0002-8771-625X, e-mail: druggen@mail.ru

Мазо Галина Элевна, Руководитель Института трансляционной психиатрии , ФГБУ «Национальный медицинский исследовательский центр психиатрии и неврологии им. В.М. Бехтерева» Минздрава России, Санкт-Петербург, Россия, ORCID: https://orcid.org/0000-0001-7036-5927, e-mail: galina-mazo@yandex.ru

Метрики

Просмотров

Всего: 54
В прошлом месяце: 16
В текущем месяце: 4

Скачиваний

Всего: 9
В прошлом месяце: 4
В текущем месяце: 0