Приложение биоинспирированных алгоритмов глобальной оптимизации в задаче подбора коэффициентов модели усталостной деградации жесткости композиционного материала

 
Аудио генерируется искусственным интеллектом

Резюме

Рассматривается задача нахождения усталостных характеристик материала по результатам испытаний композиционного материала. Исходными данными являются свойства материала, параметры нагрузки и таблично заданная зависимость модуля упругости от количества выполненных испытаний. Сформирована дифференциальная математическая модель, описывающая изменение модуля упругости с ростом числа испытаний. Ее параметры находятся с помощью аппроксимации скорости изменения модуля упругости по формулам численного дифференцирования различного порядка и решения задачи параметрической идентификации. Коэффициенты модели определяются в результате использования метода, имитирующего поведение стаи мотыльков, относящегося к биоинспирированным алгоритмам глобальной оптимизации. Приведено решение поставленной задачи для конкретного композиционного материала.

Общая информация

Ключевые слова: композиционный материал, модель деградации жесткости, биоинспирированный алгоритм, Численные методы, интегрированное обучение

Рубрика издания: Методы оптимизации

Тип материала: научная статья

DOI: https://doi.org/10.17759/mda.2024140107

Поступила в редакцию 20.02.2024

Принята к публикации

Опубликована

Для цитаты: Пантелеев, А.В., Турбин, Н.В., Надоров, И.С. (2024). Приложение биоинспирированных алгоритмов глобальной оптимизации в задаче подбора коэффициентов модели усталостной деградации жесткости композиционного материала. Моделирование и анализ данных, 14(1), 103–120. https://doi.org/10.17759/mda.2024140107

© Пантелеев А.В., Турбин Н.В., Надоров И.С., 2024

Лицензия: CC BY-NC 4.0

Литература

  1. Van Paepegem W. Development and finite element implementation of a damage model for fatigue of fibre–reinforced polymers. Ghent University Architectural and Engineering Press, 2002.
  2. Пантелеев А.В., Кудрявцева И.А. Численные методы. Практикум.– М.: ИНФРА–М, 2017.
  3. Киреев В.И., Пантелеев А.В. Численные методы в примерах и задачах.– СПб.: Изд–во Лань, 2015.
  4. Mirjalili S. Moth–flame optimization algorithm: A novel nature–inspired heuristic paradigm// Knowledge–Based Systems. 2015. Vol. 89. P. 228–249. https://doi.org/10.10.16/i.knosys2015.07.006.
  5. Пантелеев А.В., Скавинская Д.В. Метаэвристические стратегии и алгоритмы глобальной оптимизации.– М.: Факториал, 2023.
  6. Пантелеев А.В., Каранэ М.М.С. Мультиагентные и биоинспирированные методы оптимизации технических систем.– М.: Изд–во Доброе слово и Ко, 2024.
  7. Whitworth H.A. A stiffness degradation model for composite laminates under fatigue loading // Composite Structures. 1997. Vol. 40. No. 2, P. 95–101. https://doi.org/10.1016/S0263–8223(97) 00142–6.

Информация об авторах

Андрей Владимирович Пантелеев, доктор физико-математических наук, Профессор, заведующий кафедрой математической кибернетики института «Информационные технологии и прикладная математика», Московский авиационный институт (национальный исследовательский университет) (МАИ), Москва, Российская Федерация, ORCID: https://orcid.org/0000-0003-2493-3617, e-mail: avpanteleev@inbox.ru

Николай Васильевич Турбин, ведущий инженер института «Авиационная техника», Московский авиационный институт (национальный исследовательский университет) (МАИ), Москва, Российская Федерация, ORCID: https://orcid.org/0000-0001-8887-4586, e-mail: nikturbin@gmail.com

Иван Сергеевич Надоров, ассистент кафедры математической кибернетики института «Компьютерные науки и прикладная математика», Московский авиационный институт (национальный исследовательский университет) (МАИ), Москва, Российская Федерация, ORCID: https://orcid.org/0009-0008-2085-2987, e-mail: nnadorovivan@gmail.com

Метрики

 Просмотров web

За все время: 243
В прошлом месяце: 39
В текущем месяце: 6

 Скачиваний PDF

За все время: 120
В прошлом месяце: 3
В текущем месяце: 0

 Всего

За все время: 363
В прошлом месяце: 42
В текущем месяце: 6